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New concepts in thermodynamics are further extended and combined with a principle of virtual dissipation to provide 
general equations of evolution of collective open chemical systems. A new definition of the chemical potential is intro- 
duced, and some new expressions for the affinity are discussed. Application of the principle of virtual dissipation leads 
very simply to quite general continuum field equations for thermomolecular diffusion coupled to chemical reactions in a 
body force field. An energy flux theorem is established. Complementary scalar field equations and corresponding variation- 
al principles are derived along with a general mathematical formulation of chemical waves. The power of the variational 
laprangian formulation of thermodynamics is well illustrated by a simple and very general treatment of active transport 
in biological membranes. It is indicated how this lagrangian approach originated by the author in 1954 constitutes the 
fundamental conceptual and analytical tool unifying nonequilibrium thermodynamics and classical mechanics. 

1. Introduction 

Our purpose here is two-fold. First to further de- 

velop the concepts and results obtained earlier for 
open chemical collective systems [ 1,2] . Second to 
apply to such systems the principle of virtual dissipa- 
tion introduced by the author [3,4,23] as a complete- 
ly general and fundamental tool to obtain field dif- 
ferential equations as well as lagrangian equations 
with generalized coordinates. 

Sections 2 and 3 recall briefly the new concepts 

and results for open systems. A new definition of the 
chemical potential in section 4 provides a formula- 
tion of the new results in a form directly comparable 
with traditional procedures. This requires the intro- 
duction of two axioms. 

An interesting expression for the affinity obtained, 

by de Rycker [9,10] is discussed in section 5. His ex- 
pression uses the traditional definition of the heat of 
reaction and mixture properties. It is shown to be 
equivalent to the new value derived by this writer [ 1, 
21 which is expressed in terms of intrinsic heat of re- 
action and the physical properties of the indivual re- 
actants. 

Section 6, discusses reactions in a single cell open 
or closed. The relation of availability to the affinity 

is illustrated. For the open cell it is shown how the 
equations constitute a particular case of the general 
lagrangian form. 

The general entropy balance equation is derived in 
section 7, along the lines developed earlier [ 14,15,17]. 
In section 8 the principle of virtual dissipation [3,4, 
231 is rederived in the particular context of the pres- 
ent paper, and applied in section 9 to obtain field dif- 
ferential equations for a continuum with thermomo- 

lecular diffusion coupled to chemical ieactions. The 
equations are completely general, including heat 
transferred and generated as well as the influence of 
the gravity field. As shown in section 10 they lead to 
an energy flux theorem and the classical result for the 
Joule-Thomson expansion. 

The field equations as well as the variational prin- 
ciple may be expressed in complementary form with 
scalar variables as shown in section Il. This provides 
a formulation of chemical waves as a mathematical 
problem of characteristic values. 

Section 12 treats the problem of active transport 

of biological membranes in completely general form 
in the context of linear thermodynamics. It consti- 
tutes an ideal illustration of the power of the lag 
rangian formulation with internal coordinates as al- 
ready derived by the author in 1954-55 [3,21]. 
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The last section contains a brief outline whose pur- 
pose is to acquaint the reader with the broader as- 
pects of the variational-lagrangian formulation of non- 
equilibrium thermodynamics and its relation to areas 
of physics other than those treated here. 

2. New chemical thermodynamics of open systems 

A fundamentally new approach to the chemical 
thermodynamics of open systems has been developed 
earlier [ 1,2] _ We shall briefly recall the key results. 

We have considered a hypersystem constituted by 
the three cells, a primary cell C,, a chemical equilib- 
rium cell C, and a thermal well TW. A chemical re- 
action “producing” masses dm, = vk d[ may occur 
in C, at the temperature T. The same reaction is in 
equilibrium at the temperature Tes in C,. The ther- 
mal well TW is a large isothermal reservoir at the con- 
stant temperature To. We have introduced an “intrin- 
+” heat of reaction fiPT [ 1,2] defined so that 
lz,, dt is the heat absorbed by the cell C, undergo- 
ing a reaction d{, at constant pressure and tempera- 
ture, the “products” of reaction being removed as the 
reaction proceeds. Under these conditions the com- 
position, pressure and temperature of the cell remain 
constant. The masses “produced” by the reaction are 
positive or negative, to correspond to substances 
created or disappearing. The traditionally defined 
heat of reaction is denoted h,, and differs from /& 
by an additional heat of reversible mixing at constant 

pressure and temperature [ 1,2] . 
The cells C, + Cch represent a collective system. 
We denote by hi+ the intrinsic heat of the equilib- 

rium reaction in C, at constant pressure p,, and con- 
stant temperature Tcs. We have derived the relation 

[121 7 

‘pT 

pk* 
(d&/p; + T’di,). (2.1) 

Pkcq’eq 

The pressure & is the pressure of the pure substance 
in equilibrium with the cell C, through a semiper- 
meable membrane. By definition we call & the par- 
tial pressure of the substance in C,. The pressure 
& ~~ is the partial pressure of the substance in C,. 
The integral is applied to the pure substance through 
an arbitrary path of variable pressure, density, tem- 

perature pipi T’ and entropy differential ds, per unit 
mass. 

We have also shown that it is possible to define 
the increase of entropy dS,,, of the collective system 
due to a chemical reaction dt, without recourse to 
any statistical definition of entropy, by using an 
equivalent reversible process in the hypersystem. Fol- 
lowing de Donder [S] , dS,/dg = A/T defines the af- 
finity A. The value of A/T was found to be [ 1,2] 

$.=!!f$!!.=$vkp”’ djh+$.i-_+. (2.2) 
pk eq *eq eq 

The collective potential c13 of C, f C,, also called cell 
potential of C, is 

V=U -To”, (2.3) 

where%! is the collective energy of C, + C,, and J 
its collective entropy. If a reaction dt occurs in C, as 
a rigid adiabatic closed cell, there is no change in in- 
ternal energy (dCU = 0) and 

dW = -To d J, = -(TO/T)A d$. (2.4) 

Note that these quantities are defined by means of a 
reversible process which produces the same change of 
state as the chemical reaction. Hence when the change 
occurs purely through a reaction, the work d W of the 
corresponding reversible process is lost. 

Consider now the primary cell to be open, non- 
rigid, and non-adiabatic. In order to deal with this 
case we have added to the hypersystem supply cells 
CSk each containing a pure substance k and all at the 
same pressure and temperature p. To. The collective 
system is now constituted by the cells C, + C,, + 
xk CSk and the hypersystem is obtained by adding 
the thermal well TW. The cell C, at the pressure p 

may now exhibit a change of volume du. An amount 
of heat TdsT may be injected into it by means of a 
heat pump between C, and TW. Masses dfifk extract- 
ed from CSk may also be injected into C, by a re- 
versible process which we have called a thermobaric 
transfer. The mass increases dMk are in addition to 
those dm, = vk dg due to the chemical reaction dg. 
The resulting increase of cell potential was found to 

be P21 

dW= -(TO/T)A d$ -p dv + F +, dMk + 8 ds,. 

(2.5) 
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where 

e=T-TO. (2.6) 

The coefficient Gk was called the thermobaric poten- 
tial. Its value [1,2] is 

pkT 

$k = s (dp;lp; + e’ &k)> (2.7) 
POTO 

with 

8’ = T’ - TO. (2.8) 

It represents the work required to transfer a unit mass 
of substance reversibly from its supply cell CSk to the 
primary cell C,. The term 19 ds, in (2.5) is the work 
required by a heat pump extracting heat from TW at 
the temperature To and injecting an amount of heat 
T&T into C, at the temperature T. The change of 
collective entropy d J associated with dcVrk is defined 

as the change of entropy of the collective system C, t 
Cc, t xk CSk. We have called it the collective entropy 
of C, because it is completely determined by the state 

variables of C,. Its value [ 1,2] is 

(2.9) 

where 

?kT 

ik = s ($1 (2.10) 

boTo 
was called the “specific relative entropy” of substance 
k in C,. We note that pk is the partial pressure of sub- 
stance k in C, as defined previously. It was also noted 
that ds, is not a state variable of the primary cell. 
However we may eliminate ds, between eqs. (2.5) 
and (2.9). This yields 

dV=-Adg-pdv+&5 dM%dJ, 
k k 

(2.11) 

where 

@k=+k+’ (2.12) 

was derived earlier [ 1,2] and called the convective po- 
tential. In expression (2.11) all differentials are now 
state variables. If several reactions take place, expres- 
sion (2.11) becomes 

dV=-C$d$,-pdutC@ dMktBdJ. 
P k k (2.13) 

Hence 

aV/a$ = -A,,, av/av = -p, 

aclp/aMk = $k, av/ad = 8. (2.14) 

As already pointed out [ 1,2] the convective po- 
tential (2.12) is completely defined within the hyper- 
system and does not involve any undetermined con- 
stant. It may be written in more explicit form by in- 
troducing the value (2.7) for J/k. We find 

$k=Tk -TS,, 

with 

(2.15) 

pkT 

Tk = 
s 

(dp;/jr; + T’ dik). (2.16) 

~07’0 
Integration by parts yields 

zk = P&k - P&,, + $9 

where 

(2.17) 

pkT 

‘k = - s [p;, Wp;) + T’d:kl> (2.18) 

POTO 
is the increase of internal energy, per unit mass trans- 

ferred, of the collective system C, + CSk and Ek is 
the associated increase of enthalpy of the same sys- 
tem. We may call kk and 2, the specific relative ener- 
gy and enthalpy of the substance in k. They are call- 
ed relative with reference to the state of the sub- 
stance in the supply cell. 

The physical significance of the cell potential21 
should be clearly understood. We start from an ini- 
tial state which is assumed to be the lowest state of 
energy attainable by the hypersystem. We then bring 
the cell C, to a given state by thermobaric transfer 
and the use of heat pumps. The reversible work in 
this process defines the collective potential V . 

3. Generalized collective system and mixed collective 
potential 

Instead of a single primary cell we may consider 

a large collection Zol C,, of such cells. We have de- 
fined [l-4] the collective potential of this system as 

I/‘= DV,, (3.1) 
CY 

where V o1 is the potential of each cell as defined by 
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(2.3). We may also write 

V=U-To& (3.2) 

where U and S are the collective energy and entropy 
of the collective system 

sys= ccpa+c csL+cch. 
01 k 

(3.3) 

The collective potential V is by definition the revers- 
ible work accomplished on the hypersystem Sys t 
TW in order to bring the system Sys to a given state 
starting from a suitably defined ground state for 
which we put V = 0. The entropy S of the system Sys 
is defined classically. Since the transformation in the 
hypersystem Sys t TW is reversible, its total entropy 
does not vary, hence the entropy S of Sys is simply 
the entropy lost by the thermal well TW. changes of 
state due to chemical reactions are included in this 
procedure since we have shown that we may produce 
the same change of state by an equivalent reversible 
process in the hypersystem. 

Consider a change of state in the system Sys alone 

without any involvement of TW, hence without any 
heat energy acquired or lost by Sys. If we neglect the 
kinetic energy, the work W done on Sys must be equal 
to its increase U of energy. Hence 

lJ= w. (3.4) 

This relation is based on the first principle and is val- 
id whether the transformation is reversible or not. 
With this value of U eq. (3.2) becomes 

V= W - ToS. (3.5) 

Since no heat or matter is provided to the system Sys 
its entropy S represents the entropy produced in Sys. 
To indicate this we replace S by S* and write 

V= W - ToS*. (3.6) 

For any change A V we may also write 

-AW = -AV - ToAS*, (3.7) 

where -AW is the useful work provided by the sys- 

tem on its environment. By the second principle 

AS*>0 (3.8) 

and 

-AW<--AI! (3.9) 

The useful work is therefore less or equal to the drop 
in value of I’. Hence V is the maximum useful work 
available relative to the ground state, and -A V is the 
loss of “availability”. 

A generalization of these concepts is provided by 
considering that the work on the system is composed 
of three parts. The work -pau of the atmospheric 
pressure pa due to a change of volume u, the work 
-G due to a force potential field such as gravity and 
the work W, of the remaining external forces. Hence 

W=-p,u-ct we. 
. 

With this value eq. (3.6) becomes 

3 = We - ToS*, 

where 

(3.10) 

(3.11) 

‘9= VtpautG (3.12) 

was called a mixed collective potential [ 1,2,4] which 
embodies combined mechanical and thermodynamic 
properties. We may also consider 9 as a “generalized 
availability” of the collective system. 

Mixed mechanical and thermodynamic stability 
criterion 
If we take into account the kinetic energy 7, relation 
(3.4) must be replaced by 

TtU=W (3.13) 

and eq. (3.11) becomes 

3’ - We = -(ToS* t 7). (3.14) 

If we consider a static equilibrium for which ‘Y = 0, 
departure from this state requires a decrease of 3 - 
We. Hence if 3 - W, is a minimum this cannot hap- 
pen and the equilibrium is stable. Note that this cri- 
terion is extremely general and involves, mechanical 
forces as well as thermal and chemical changes. Bound- 

ary and environmental conditions are included. For an 

open system we represent the environmental influence 
by considering as part of the collective system any num- 
ber of cells which may exchange matter or heat with it. 
The potential of these cells is thus included in the total 
value of 9. 

When dealing with a continuum in a domain R, 
the summation in (3.1) is replaced by a volume inte- 
gral 

V= j%dn, (3.15) 

52 
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where V is the potential per unit volume. A particu- 
larly useful expression is obtained by considering a 
transformation in two steps. First at constant tem- 
perature To, in which case 

F= U- ToS (3.16) 

is simply the classical Helmholtz free energy of the 
collective system. In the second step only the temper- 
ature is varied. Applying eq. (2.5) the collective po- 
tential becomes 

V=Ft ~dS$9dsT=F+ Jda j(ctV)dT, 

52 To n To (3.17) 

where c is the heat capacity per unit volume as a func- 
tion of all state variables including the temperature. 
For quasi-isothermal transformations with small 0 it 
becomes 

V= F t f j&$J*/T)dSL 
n 

(3.18) 

The particular linearized case of a continuum under 
initial stress has been treated in detail [5,6] . 

4. New definition of the chemical potential 

We may write (2.1) in differential form 

diypT = F vk di+ (4.1) 

which generalizes Kirchhoff’s equation. We put 

PkT pkT 
“;c = 

s dV,, $ = /- dS,. (4.2) 

pkeqTe4 PkesTes 

With these definitions eqs. (2.1) and (2.2) become 

‘pT - pT 
jps = Cv ~1 

k kk’ 

A/T=C k vki;c + L;l/Tq - fipT/T. 

(4.3) 

(4.4) 

Elimination of EptpT between eqs. (4.3) and (4.4) yields 

A = - c v I$’ t (T/Tq - l)i;,+, 
k kk 

(4.5) 

where 

c+$=C; -TS;. (4.6) 

The quantities &, Zi and gk are respectively the con- 
vective potential, specific enthalpy and entropy de- 
fined relative to the chemical equilibrium state as 
lower limit of integration. Eq. (4.5) is completely rig- 
orous and based exclusively on the axioms of clas- 
sical thermodynamics. It requires the knowledge of the 
temperature Tes and intrinsic heat of reaction zeq at 
chemical equilibrium. 

PT 

In order to express the affinity in the traditional 
form in terms of chemical potentials we must intro- 

duce some new axioms: 

(a) We integrate (4.1) with the absolute zero as the 
lower limit and write 

ipT = q vk [s”’ dV, + Pk(0) 1. 
0 

(4.7) 

The value of the integral is obtained by extrapolating 
the experimental data to the absolute zero. It is as- 
sumed that the constant of integration may be writ- 
ten in the form xk Vk zk(0) where Ek(0) are COnStantS 

characteristic of each substance and independent of 
the nature of the chemical reaction. 

(b) It is assumed that 

$$lTecl = F Vk [ 
PkeqTeq 

s dS, + ik(0) 
I 

. (4.8) 
0 

Again the value of the integral is obtained by extrapo- 
lation to the absolute zero and Sk(O) are constants 
characteristic of each substance and independent of 
the nature of the chemical reaction. Putting ?k(o) = 0 
amounts to assuming the validity of Nernst’s theorem. 

Substitution of expressions (4.7) and (4.8) into 
the value (4.5) yields the affinity in the traditional 
form 

A=-& p k k k’ 

where 

Pk = Fibs _ T$‘“, (4.10) 

pkT pkT 
-abs = 
‘k s 

dVk-+ Zk(0), ;kb” = 
_I 

’ dik t Sk(O). 

0 0 (4.11) 
Fq. (4.10) provides a new and completely general 
definition of the chemical potential pk. Its use is on- 
ly required for chemical reactions if we do not know 
iTT and Teq. 
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4.1. Relation to the traditional formalism of 
chemical potentials 

If we introduce the value (4.9) of the affinity in 
the differential (2.11) we obtain 

The increase of mass of each species k is 

dmk = dMk t vk d.$, (4.13) 

where the first term is due to convection and the sec- 
ond due to the chemical reaction. Also by definition 
the convective potential is 

@k =pk-&,k’ (4.14) 

where pOk is the chemical potential of the pure sub- 
stance in the supply cell. Hence the differential (4.12) 
anddU=dC)3tTodJbecome 

dV = d‘-V tr - T pok dMk , 

dQ=dV”-TpokdMk, 

where 

dQ!“T=Cr_(kdmk-pduttIdd, 
h 

d’ll”=Cpkdmk-pdv-tTdJ, 
k 

dV= xdcVz - ;pokdMka, 

dU= gdVz - zpokdMk‘? 
CK 

(4.18) 

If the exchange of matter occurs only between prima- 
ry cells we may write 

cd&“=0 
01 

(4.19) 

and the values (4.18) are reduced to the traditional 
form 

dV= c dcVtr 
01 01’ 

dU= c dU’ cy’ oi 

(4.20) 

Hence the traditional form of these expressions ap- 
plies only to closed systems under the condition 
stated. 

(4.15) 
5. Evaluation of the affinity by de Rycker’s procedure 

(4.16) 

are in traditional form. Note however that while the 
form is the same the definition of the chemical po- 
tential pk is obtained differently, and in addition J 
is a collective entropy. 

Except for the difference of definition of the vari- 
ables, d@ is expressed in the traditional form intro- 
duced by Gibbs 171. 

If we deal with a single primary cell the values 

(4.15) are not equal to the traditional form (4.16). 
However it may be valid if we consider a collection 
of primary cells C,,. For each cell we write 

dVa=dVty’-C k $,k de”, 

dUol = d?lz - T pok dMka. 
(4.17) 

The differentials of the collective potential and ener- 
gy of the whole system are 

A very simple evaluation of the affinity was pro- 
posed by de Rycker [9,10] based also on the knowl- 
edge of the chemical equilibrium state. Consider a 
closed primary cell to go through a closed cycle abcda 

at constant pressure p with variable volume and vari- 
able reaction coordinate t;. Along ab the reaction is 
frozen and the value t = c1 is constant, while the tem- 
perature varies from T to the chemical equilibrium 
temperature Tes. From b to c an infinitesimal reac- 
tion d[ occurs at the equilibrium temperature Tes. 
From c to d the reaction is again frozen at a constant 
value E2 = [I + d.$ while the temperature is decreased 
from Teq to 7’. Finally along da the value of g returns 
to El while the temperature T is constant. The closed 
cycle returns the cell to its initial state. By integration 
of equation (2.9) along this cycle (with dMk = 0 since 
the cell is closed) we obtain 

s6 [(A/T) d$ + dsT] = 0. (5.1) 
abcda 

Since A = 0 along the chemical equilibrium branch 
bc, relation (5.1) leads to 

-+d$+jdsTtj.dT 
a 

d s +($&%)di_O, (5.2) 
C 
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where hpT is the heat of reaction at constant pressure 
and temperature according to the traditional defini- 
tion which includes the heat of mixing while h?T de- 

notes the value of hpT at chemical equilibrium. Also 

if cP (T, [) denotes the heat capacity of the cell at 
constant pressure we may write 

j ds, t p ds, = -dt $ T’ 
Tecl 1 acp(W 

aE dT’. (5.3) 
a C T 

Hence (5.2) becomes 

A_h> hpT 
$ 

Tq 1 acp(T’,U 

T Teq T T 7 a[ 
dT’. (5.4) 

Through the closed cycle there is no increase of cell 
energy, moreover the work done by the constant pres- 
sure on the cell is zero, since the volume returns to its 
initial value. Hence the total heat energy absorbed is 
zero, i.e. 

Teq ac 
he” -h 

PT PT- s 
T 

$ dT’ = 0. (5.5) 

Elimination ofh,, between eqs. (5.4) and (5.5) 
yields 

Tes 
hTTtj/- (,+)~dT’. (5.6) 

T 

This is the value of the affinity derived by de Rycker 
[9,10] . He has also verified that in the temperature 
range of a large number of industrial problems we 
may neglect the last term in (5.6). For these cases he 
obtains the remarkably accurate simple approxima- 

tion 

A = (T - Tq)h;;/Tq, 

which plots as a straight line versus T. 

(5.7) 

It is of interest to point out that eq. (5.1) applied 

along the branch ad yields the classical relation (see 
ref. [ 11, p. 481) 

A = T(ad/@),, -h,,. (5.8) 

Similar results for the case of constant volume instead 
of constant pressure are easily obtained by the same 
procedure. We derive 

A = (T - T,) h;;ITes, (5.9) 

and 

A = T(aJ/at)“T - hUT, (5.10) 

where h,, is the traditional heat of reaction at con- 

stant volume and temperature and h?& is its value at 
chemical equilibrium. Eq. (5.10) is also a classical re- 
lation (see ref. [ 11, p. 481). 

Note that h,“T and Tq are functions of all state 

variables except the temperature T. Hence they are 
functions of the chemical coordinate i, the volume u, 
and the masses Mk convected into the cell. 

We will show that the affinity A derived from eqs. 

(5.4) and (5.5) by de Rycker’s procedure is compat- 
ible with the value derived from eqs. (2.1) and (2.2). 
Consider a cell C, without chemical reaction at the 
temperature Tq. We go through a cycle at constant 
pressure p where the cell C, is first brought to the 
temperature T. A mass dm, is then extracted revers- 
ibly from C, at the partial pressure pk and constant 
temperature T. After this extraction the cell C, is 
brought back to the temperature Tq. The mass dm, 
is also brought back to the temperature Tq and par- 
tial pressure pk eq and injected back reversibly at con- 

stant temperature Tes into the cell. Through this 
cycle the system has not changed. There is no volume 
change, and no change of internal energy. Hence 

pk eq Teq 

dm, f gdT’tdmk kT dck 

3 eq 

- hpkT dm, + hpk? dm, = 0, (5.11) 

where hiT is the heat of mixing for substance k at 
constant pressure and temperature T as defined earlier 

[ 1,2] while h keq. IS the similar quantity at the equi- 

librium temp&%ure Tq. We derive 

(5.12) 

In the same way expressing no change of entropy 

T 1 ac s hk $7 
T’a$dT’++T-- 

k 
T * 

Tes 
eq 

We may also write 

(5.13) 

(5.14) 
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as well as the following relations derived in [ 1,2] 

h PT=fiPT+ xv hk 
k k PT’ 

h~T=fi$+c v hkeq. 
k k@- 

(5.15) 

Using the values (5.12)-(5.15) in eqs. (5.4) and (5.5) 
of de Rycker we obtain eqs. (2.1) and (2.2) of this 
writer. 

6. Chemical reaction in a closed or open cell. 
Lagrangian formulation 

We shall consider first a closed adiabatic primary 
cell. Its volume v may vary and a single reaction .$ 
may take place in the cell. The cell potential 

V =T(u,<) (6.1) 

is a function of its volume v and the reaction coor- 
dinate .$. Since the cell is closed and adiabatic we put 

dh,Ak = ds, = 0 (6.2) 

in eq. (2.5). Hence 

d‘%‘= -(To/T)A dl - p dv, (6.3) 

and 

av/av = -p, av/at = -(TO/T)A. (6.4) 

Since V is defined by means of A the second equa- 
tions constitutes an identity, so that eqs. (6.4) are 
not sufficient to determine the two unknowns v and 
r; as functions of the pressure p. The additional equa- 
tion is provided by chemical kinetics where the rate 
of reaction g is given in terms of [ and u. We write 

6 =f(Lv). (6.5) 

Eqs. (6.4) and (6.5) may be given in a different form 
which is a particular case of a more general formula- 
tion, by evaluating the affinity 

A =A(Lu) (6.6) 

as a function off and v. We then eliminate .$ between 

eqs. (6.5) and (6.6). This yields 

A = R(&, v). (6.7) 

We note the fundamental property 

. . 
Em, v) 2 0. (6.8) 

Eqs. (6.4) then take the form 

avyav = -p, swat = -(T~~R(&, 4. (6.9) 

Since the temperature T may be evaluated as a func- 
tion of r; and v eqs. (6.9) govern the two unknowns 
5 and v. If v is given as a function of time then the 
second equation contains the single unknown 5‘. As an 
illustration we plot V as a function oft for various 
values of the volume v (fig. 1). 

Consider the curves v1 = Const and v2 = Const 
with v1 < v2. These curves show a minimum on the 
line &(A = 0) which corresponds to chemical equi- 
librium. If we decrease the volume slowly, V and t 
will vary along this line ab. Since A = 0 along this line 
eq. (6.3) yields 

V,-‘-&=jPdu. (6.10) 
a 

Hence the lost availability Va-Vb is exactly equal 
to the work provided by the cell. On the other hand 
if the change of volume is accomplished very fast, we 

move along the line ac with d{ = 0. Hence 

Wa- W, ‘jPdu. (6.11) 
a 

The loss of availability cVa - V, along this line is al- 
so equal to the work provided but its value is smaller 
than (6.10). If the reaction is then allowed to pro- 
ceed at constant volume v toward equilibrium b we 
obtain from (6.3) 

czlc - CII, = J(T~,T)A dt. 
b 

(6.12) 

0 5 
Fig. 1. Plot of the cell potential W as a function of u and E. 
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Hence there is further loss of avallability V,-V, 
with no work accomplished. 

Consider now the general case of an open non- 

adiabatic cell where several reactions tP may take 

place. We may evaluate the affinity 

A =A($,u,Mk,J) (6.13) 

as a function of the reaction coordinates tP the vol- 
ume u the masses Mk injected and the entropy J. On 
the other hand from chemical kinetics we write the 
reaction rates as 

$ =f,(5,,uJ0). (6.14) 

We then eliminate .$, between eqs. (6.13) and (6.14). 
This yields 

AP =R,(&:u.&$. (6.15) 

Again the functions R, obey the fundamental inequal- 
ity 

F $Rp >O. (6.16) 

With these functions R,, eqs. (2.14) are written 

avjau = -p, av/aMk = Go, 

avjad = e, aclllagp = -R . 
(6.17) 

If c13 has been evaluated as a fun:tion of u, Mk, J and 
cp eqs. (6.17) constitute a complete system for the 
time evolution of these variables, for given values p, 

0 and @. 
We may write these equations in the fundamental 

lagrangian form introduced by the author in irrevers- 

ible thermodynamics [3,4,2 I] . If we denote the vari- 
ables u, Mk and J by qi and the corresponding vari- 
ables -p, Gk and 8 by Qi we may write eqs. (6.17) 
in the abreviated form 

aVaQ,= Qi, av/atp t RP = 0. (6.18) 

In the author’s general lagrangian thermodynamics 
Qi plays the role of generalized driving forces and $, 
that of internal coordinates [3,4,21]. 

These equations also govern the evolution of the 

system if any three of the six variables u, Mk, J , p, 

$k and 0 are prescribed functions of time. If the sys- 
tem is weakly irreversible, i.e. if during its evolution 
the system remains close to an equilibrium state we 
may apply Onsager’s principle [ 12 ,131 and write 

Ap = RP = aolat P 
where 

(6.19) 

D=;B g 6 
PO P a’ 

(6.20) 

is a quadratic form in gP whose coefficients 

Bp(r =Bop =Bp,(4i,tp), (6.21) 

are functions of the state variable 4i, tP. Eqs. (6.18) 
become 

a vlaqi = Qi> av/a.gp t aqaf, = 0. (6.22) 

These equations are similar to those which govern 
nonlinear viscoelasticity [4] where Qi are applied 

stresses and tP are internal coordinates. [See also eqs. 
(13.3) below.] 

7. Fundamental entropy balance in a continuum with 
entropy production, diffusion and convection 

In the foregoing development we considered finite 

cells. We shall now apply the newly developed meth- 
ods and concepts to a continuum. The collective en- 
tropy of the continuum is written 

S= JCldS2, 
s2 

(7.1) 

where the volume integral is extended to a domain L? 
and d dS2 represents the collective entropy of the 
elementary cell of volume dG! = dx, dx, cbc,. Hence 
J is the local entropy per unit volume. It is impor- 

tant to note that eq. (2.9) for d Jis not valid here be- 
cause it assumes that there is no gradient of S across 
the cell. A new entropy balance equation was derived 
[14] and developed subsequently [ 151. The proce- 
dure is to write the rate of increase S of the total en- 
tropy S as (the dot represents a time differential) 

S = Jo& +i/T)dLC J:k~;nidA. (7.2) 
n ik A 

In this equation S& is the rate of entropy produc- 

tion per unit volume which is not due to thermal dif- 
fusion, and & is the rate of energy supplied to a unit 
volume by thermal conduction at the temperature T. 
The second integral is evaluated at the boundary A 
of a with a unit normal ni and represents the entropy 
supplied to L! by convection. The rate of mass flow 
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of substance k per unit area is $ and Sk is the specif- 
ic relative entropy of a unit mass of the substance in 
equilibrium with the medium through a semiperme- 
able membrane at the point considered. 

Conservation of energy requires 

il = - c aqaxi, 
i 

(7.3) 

where Eii is the rate of heat flow per unit area. The 
surface integral in (7.2) may be written as a volume 
integral. After substitution of the value (7.3) for h 
eq. (7.2) may be written 

S=J 
s2 

(S* - c d$/&+)dn, 
i 

where 

si=cs ilk+ ‘T k k i Si , sr =ir,lT, 

.* .* 
s ‘SNT - qgg. 

i 

(7.4) 

(7.5) 

The vector Si is the total rate of entropy flow, Sl? the 

rate of entropy flow by conduction and i” the total 
rate of entropy production per unit volume including 
the entropy produced by thermal flow. From (7.4) 
the rate of entropy increase per unit volume is 

2 = s* - C aSijaxi. 
i 

(7.6) 

This is the basic entropy balance equation, generaliz- 
ing the result of Meixner [ 161 for thermal flow. 

Integration with respect to time yields 

J =s*ts, 

where 

(7.7) 

s = - C asilaxi, 
i 

(7.8) 

is the entropy supplied and Si is a vector introduced 
earlier as the entropy displacement [4,14,15]. Note 
that the mass displacement vector Mf also satisfies a 
similar holonomic constraint 

ti = - C aMflax,, 
i 

(7.9) 

where Mk is the mass acquired by convection per unit 
volume. 

In the presence of chemical reactions the conserva- 

tion of mass condition is written 

mk=MktC, t =-CaMfla~~tC~ .g 
p bp i p kpp’ 

(7.10) 

where mk is the mass increase of substance k per unit 
volume and t, are reaction coordinates. 

8. Principle of virtual dissipation 

Let us apply eq. (3.13) to a rigid continuum a. We 

assume no volume change, no external work except 
that of the potential G(u = We = 0) and negligible 
inertia forces. We write 

I’= JVdn, S* = j-s*d& G = JP$jdfl, (8.1) 

52 D_ a 

where 

=V = ‘LI(tp,Mk, CT), (8.2) 

is the potential per unit volume, $’ the scalar poten- 
tial of body forces per unit mass and p the mass per 
unit volume. Eq. (3.11) becomes 

$ s(W +p$j+TOs*)da=O. 
n 

(8.3) 

This equation is applicable assuming no heat or mass 
flows through the boundary, hence the normal com- 
ponents Of Si and Mf vanish at the boundary. The 
equation is also valid for arbitrary variations St;,, 6Si, 
6Mf and 6s” which satisfy the holonomic constraints 

(7.8) and (7.9) hence 

6~ = - C a 6s,lax,, 
i 

SMk = - c a GM;Iaxi. 
i 

(8.4) 

We also satisfy 

sp = - F 6~~ = - F a6Mflaxi. 

In variational form eq. (8.3) becomes 

s (6%’ + $?6p + To 6s*) da = 0. 

sz 
From (7.7) we derive 6 $ = 6s + 6s”. Hence 

(8.5) 

(8.6) 
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6W= 6,W + (aw/aJp*, 

where 

is a restricted variation obtained by not varying s* in 
J. On the other hand, from eqs. (2.14) we write 

FV/a&=O=T-To. (8.9) 

Substitution of the value (8.7) of 6 CZI into (8.6) 
yields 

J (?$V + Q6p + T6s*) dS1 = 0. (8.10) 

n 
This relation expresses the principle of virtual dissipa- 

tion [4,23] as applied to the assumed continuous sys- 
tem. For simplicity we have neglected the inertia 
forces. These have been included in the general formu. 
lation [4,23] and applied to thermomolecular diffu- 
sion [15,17]. 

The term T&s* is what we have called the virtual 
dissipation. Its evaluation is obtained as follows. We 

may write 

TS*=~%?&+2Q, (8.11) 
P 

where (l/q ZP9? ,,iP and (2/Z) 9 are the rates of 
entropy production respectively by the chemical re- 
actions and the thermomolecular diffusion. The co- 
efficients 

32, = rn$,.Mk,J) (8.12) 

are defined as in (6.7) and in the present case are 
functions of the reactions rates, the masses Mk inject- 
ed per unit volume, and J . 

The dissipation due to thermomolecular diffusion 
is expressed by the dissipation function 

~=L~C!kh++~C$h$~i t@hij$$. 
2 lkij I1 kij 

. . 

” (8.13) 

It is a quadratic form in the rate variables and there- 
by embodies the Onsager principle [ 12,131 for ther- 
momolecular diffusion. The last term which contains 
the thermal resistivity hij expresses the dissipation 
for the case of pure thermal diffusion (A$! = 0). 

The coefficients C: CrF and Xii are functions of 

the local state variables .$,Mk and J . The coefficient 
Cz! represents a coupling term between mass flow and 
thermal flow which includes convection. This is dis- 
cussed in more detail elsewhere [15,17]. 

With these definitions the virtual dissipation is ex- 
pressed by 

TSs*=C32p6~ptCa’7,,M~+F~,,i. 
P ki &k 

i ’ (8.14) 

9. Variational derivation of field equations for 
thermomolecular diffusion and coupled chemical 
reactions 

The unknown field variables to be determined are 
the reaction coordinate .$,, the vectors Ml! and Si and 
the entropy produced s*. We shall apply the principle 
of virtual dissipation (8.10). With the value (8.8) for 
6,c13 and (8.14) for T&s* we may write 

We introduce the values (8.4) and (8.5) for the varia- 
tions 6s 6Mk and Fp and integrate by parts. Since the 
variations GM/ 6Si 6tp are arbitrary, we cancel the 
coefficients of these variations and obtain 

aw -“( 1 -tQ +m=o, 
axi ati aif,! 

$ 5: t$$=o, 
i ( ) I 

(9.2) 

awlalp +32 p = 0. 

These equations along with (8.11) constitute a com- 
plete system governing the time evolution of the un- 

knowns. They may be written in a simpler form by 
taking into account eqs. (2.14) we find 

ap,lax, t aqa&ff = 0, 

aelax, t acolaS, = 0, 

AP =32 
P’ 

(9.3) 
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where 

rPk=@k+S’ (9 -4) 

was introduced earlier as a mixed convective poten- 

tial. It takes into account the work ($ due to the po- 
tential forces on the unit mass. 

Isothermal case 
Assuming that all transformations occur isothermally 
at the constant temperature To amounts to putting 
8 = 0 in eqs. (9.3) and eliminating Si from the equa- 
tions. The result may however be obtained directly 
and very simply by introducing the condition 8 = 0 
from the start in the principle of virtual dissipation. 
For 0 = 0 eqs. (2.14) yield 

ac13/aJ = 0. (9.5) 

This determines J as an implicit function of tP and 
Mk. Hence 

(9.6) 

The dissipation function with suitable coefficients is 

Cg =L &!!I$@$ 
2 klij lJ 

(9.7) 

The unknowns are now .$,, and M,?‘. By varying these 
unknowns, the principle of virtual dissipation (8.10) 
yields 

(9.8) 

Ap=32. 
P 

Since 0 = 0 the thermobaric potential $k is reduced 
to 

PkTo 

tik =$ dp;Ip;c. (9.9) 
POTO 

10. Energy flux theorem 

A fundamental energy flux theorem may be de- 
rived by adding the field equations (9.3) after multi- 

plying the first group by II?~! the second group by Si 
and the third group by gp. Using relations 

T?=2C0 +~32,~, 
P 

=~~fL+~~s’+c7?p~p, (10.1) 

i i P 

derived from (8.11) and Euler’s theorem on quadratic 
forms, we obtain (since M/a+ = i3T/axi) 

+;~+~Si)-CAp~ptT~*=O. (10.2) 
ik i P 

From (7.6) and (7.9) we may write 

h? = -C afi@ax,, i =-C aiilaxitl;*. (10.3) 
i i 

Hence eq. (10.2) becomes 

~~tc,titTi -CAp$p=O (10.4) 
i k P 

with 

F;:=~c,D ilktTi,. 
k k ’ 

(10.5) 

The last terms of eq. (10.4) may be written as 

T(okti+T> -CAp.ip 

=~(qbk+s,ik9cj -FApgptTOj (10.6) 

or according to eqs. (2.3) and (2.14) 

~qkibTd -CApip 

+tTod+pMXP=II tpl?. (10.7) 

Hence eq. (10.4) becomes 

Caqa+ tTfg?=o. (10.8) 
i 

The terms C?i + Zk $?I$ represent the rate of increase 

of energy per unit volume, and Fi is the energy flux 
vector. Eq. (10.8) constitutes an energy flux theorem. 
Using relations (2.15) and (7.5) we write 

qk=@k+S=Tk-nkt$j, 

Q=~SklI++CE II?! tf. 
k k ’ 

(10.9) 

With these values the energy flux vector (10.5) be- 
comes 
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F;: = c (Ck + gk’! t hi. 
K 

(10.10) 

For a single substance and one-dimensional rate of 
mass flow and heat flow h and fi in steady state, eq. 
(10.8) yields 

F=(Z+$j)h+B=Const. (10.11) 

If we apply this to an entrance and exit point for 
which a = 0 we obtain (since ik = Const) 

Z t Q = Const, (10.12) 

which is the classical relation for the Joule-Thomson 
effect in terms of the enthalpy T. 

The kinetic energy has been neglected in the fore- 
going derivation. It has been included in a more elabo- 
rate treatment of thermomolecular diffusion [ 171 . 

11. Complementary variational principle and 

corresponding field equations. Chemical waves 

Eqs. (9.3) are linear in f;ri” and Si. They may be 

solved for these unknowns. Because of the symmetry 
of the coefficients we may write the solution in the 
form 

ll?; = -%DC/ax,k, si = -ace “lay., (11.1) 

where 

xi! = aqk/axi, xi = aelax,, (11.2) 

are dissipative forces and 

is a quadratic form in Xi”, Xi whose coefficients de- 
pend on the local state variables & Mk and J . From 
Euler’s theorem and eqs. (11 .l) and (11.2) we derive 

=_ 

Introducing relations (9.3) this becomes 

(11.3) 

(11.4) 

Hence 

W=cD. (11.5) 

The dissipation function (D ’ is the same as (D but is 
expressed in terms of dissipative forces X! and Xi. 
From (7.7)-(7.9) and (8.11) we have the relations 

I@ = - C ai$laxi, 
i 

2 = - c aSjaxi + 2QC/T + c Ap$lT. (11.6) 
i P 

Substitution of expressions (11 .l) into these equa- 
tions yields 

*=~a aV 
H i axi ax! ’ 

I 

ip =fpCt,Jfk, J). (11.8) 

The last set of equations for .$ is analogous to (6.14) 
and is derived from chemical kinetics. 

II. 1. Complementary variational principles 

We may also consider 0,~ and $, as the unknown 
variables. It is immediately verified that in this case 
eqs. (11.7) and (11.8) are equivalent to the variation- 
al principle 

(11.9) 

with arbitrary Variations 64, = 6pk, 68 and 8Ep. The 
vector ni is the unit normal at the boundary A of a, 
and we have put 

S* = T--l (11.10) 

The symbol 6, indicates that in (1, ’ the coefficients 
L are not varied. Another formulation is obtained by 
replacing 6 tP by 6AP. This can always be done since 
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&.tP is arbitrary. Taking into account the relation 

where the symbol 6, indicates that in ‘? the time 
derivatives Gk, 4 and $,, are not varied, we write 

stio t6L(Dc-S*6e t c.f 6Ap da 
P p 

t nidA =o. (11.12) 

This constitutes an alternative form of the complemen- 
tary variational principle (11.9). 

11.2. Isothermal case and chemical waves 

Consider the particular isothermal case where the 

temperature T = To is constant (0 = Xi = 0). The un- 
knowns in this case are Mk and gp since J is now a 
known function of these variables through the rela- 
tion a?/d 3 = 0. Eqs. (11.7) are reduced to 

I+ =F &(S), $ =f,(&,Mk). (11.13) 

i 
These equations are further simplified by noting that 
the local state is determined by the variables 

mk=FvkEpfMk. (11.14) 

Hencewe may write 

ip = fp(m,). (11.15) 

The coefficients of ac as well as $k are also func- 
tions of mk. Therefore eqs. ( 11.13) imply 

(11.16) 

which constitute i complete set of equations for the 
unknowns mk. 

Chemical waves correspond to periodic solutions 
in space and time. For simplicity consider a one- 
dimensional distribution along x without external 
force field (9 = 0, qk = Gk). Eqs. (11.16) become 

with xk = &&/ax. We put 

mk = mk(t), 

as periodic solutions of the single variable 

{=x- vt, 

(11.17) 

(11.18) 

(11.19) 

where v is the velocity of propagation. Substitution 

of(ll.l8)into(ll.l7)yields 

(11.20) 

a set of ordinary differential equations with the inde- 
pendent variable {. Chemical waves are thus given by 
characteristic values of v for which eqs. (11.20) have 
periodic solutions in 5. 

The treatment of chemical waves illustrated here 
on a particular case is derived from a general and sys- 
tematic process, in contrast to current procedures 

[W. 

12. Variational-lagrangian thermodynamics of active 

transport in biological membranes 

A thin membrane separates two reservoirs of cell 
potentials v- and c13+ which represent the outside 

environment. An external mass flow occurs through 
the faces of the membrane. An internal mass flow 
through “carrier” molecules as well as coupled chem- 
ical reactions take place inside the membrane. These 
chemical reactions produce a strong coupling between 
external mass flows, some of which may be in opposi- 
tion to the concentration gradient. This so-called ac- 
tive transport has been the subject of extensive studies 
by a number of biochemists and particularly by Kat- 
chalsky and Spangler [20]. 

This phenomenon is a particular case of coupled 
diffusion and chemical reactions obeying the general 
equations of the preceding sections. However the 
variational-lagrangian analysis developed earlier [3,4, 
211 for collective thermodynamic systems is particu- 
larly suited to the treatment of active transport (see 
section 13 below). An essential feature of the meth- 
od is the description of the continuous field by a dis- 
crete set of variables called generalized coordinates. 
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From the standpoint of the physicist this representa- 
tion is completely general since the number of coor- 
dinates may be arbitrarily large up to a “resolution 
threshold” as pointed out earlier [ 191 . The mem- 
brane being thin we consider the system to be iso- 
thermal at the temperature To (0 = 0). We also assume 
that there is no external body force field ($? = 0), and 
that the system is linear in the vicinity of equilibrium. 

The membrane is considered to be a one-dimen- 
sional system with the coordinate x normal to the 
faces which are located at x = --a and x = a. 

Lagrangian equations which govern the time evolu- 
tion of general linear thermodynamic system were 
developed and applied by the author in 1954-55 [3, 
2 1 ] . They are directly applicable to the present case 
and are written 

$(vtv,,,,+~=o, 
i 2 

(12.1) 

where 
+a +a 

T/= Td_x, 
s 

D=fTO 5”dx. 
s 

(12.2) 
-a -a 

The collective potential Vof the membrane is a qua- 
dratic form in the generalized coordinates 4i and the 
dissipation function D is a quadratic form in 4i. The 
quadratic forms have constant coefficients and are 
positive definite. The collective potential of the en- 
vironment is 

c23 ext =v- +v+, (12.3) 

where V - and c13+ are respectively the potential of 
reservoirs in contact with the faces at x = -a and x = 

a. We may write (12.1) as 

W/i3qi + aD/&j, = Qi, (12.4) 

with thermodynamic driving forces Qi = -aCll,,Jaqi. 
The lagrangian eqs. (12.1) may also be considered as 
a consequence of the principle of virtual dissipation 
(8.10) written in the form 

+a 

6Tex, + s 
(6v + To&s*) dx = 0. (12.5) 

The std of the membrane is described by A&(x) 
the mass displacement distribution of each cher&al 
species along x and by the reaction coordinate lP for 
each reaction. The membrane being thin we shall ne- 
glect the mass storage mk. Hence putting mk = 0 in 

eq. (7.10) we derive the mass conservation constraint 
in the form 

(12.6) 

which establishes a coupling between the mass trans- 
port and the chemical reactions. Putting mk = 0 also 
impliesV = 0. Hence the lagrangian eqs. (12.4) are 
reduced to 

aDlaGi=ei. 

The dissipation function is 

+a 
D= Cgdx, 

s 
-a 

where 

(12.7) 

(12.8) 

The coefficients ck represent uncoupled molecular 
diffusion. We assume homogeneous properties so that 
ck and BuP are constants. 

We now introduce generalized coordinates qk qP 
and {, by writing@ in the form 

@=qk-xFvkpqpf alp kp cxp cy f TV,, (12.10) 

where 9, are suitably chosen functions of x with 
the property 

Fib@) = Yap(a) = 0. (12.11) 

For example we may choose trigonometric functions 
of the type 

sin (nrrx/a), cos[(izt~)7rx/a], n=0,1,2 )...). 
(12.12) 

Substitution of expressions (12.10) into the mass 
conservation constraint (12.6) shows that it is satis- 
fied if we put 

(12.13) 

It is convenient to separate the functions 9,,(x) into 
a symmetric group where 9, (x) = yap(-x) and an 
antisymmetric group where $&,(x) = -T,,(-x). We 
also use i as a single index to indicate all pairs of in- 
dices cup. The variables folp are then denoted by pi and 
<i depending on whether associated with symmetric 
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or antisymmetric functions Tap. By substituting the 
values (2.10) and (12.13) in the dissipation function 
(12.9) it separates into two uncoupled terms 

D=Ds’Da, (12.14) 

where 

D, =$$4;+ ~bki@&+biiiiij, 
ij 

(12.15) 

Da=; Cb’/j;+ ~b;iQ&;~b’_~i~;. 
P pi iJ 

The corresponding lagrangian equations are also un- 
coupled. They are 

aDsI%, = Qk > aDa& = Q; , 

aqa& = 0, aDala$ = 0. 
(12.16) 

The variables pi and ii play the role of internal vari- 
ables [see eq. (13.3) below] . The driving forces are 

Q, = -act.xt/a4k = G; - G;, 

Q; = -ayxtmp = T a($ + G,‘) vkp, (12.17) 

where $ and @k+ are the convective potentials of the 
environment at the faces x = -a and x = a. Consider 
for example the first group of eqs. (12.16) for qk and 
si. They are written 

(12.18) 

~bliQ,+~bijj;.=O. (12.19) 
1 i 

The matrix bij being positive definite its inverse A, 
is also positive definite. The set of eqs. (12.19) may 
be solved for pi as 

s;. = - T Aij bli &. (12.20) 

Substitution of this value in eqs. ( 12.18) yields 

C,& &cil=Qk 
r 

(12.21) 

where 

Klk = K,, = c Aij bki blj . 
ij 

(12.22) 

These equations constitute a particular case of the 

general impedance derived from linear thermodynamic 
systems in 1954-55 13,211 with internal coordinates 
as explained in section 13 below. Since the matrix 
A, is positive definite the matrix Klk is also positive 
definite. This can be seen by writing 

c Klkz,zk = CAijZiZj>O, 
Ik ij 

where 

Zi_=c b .z k kzk’ 

(12.23) 

(12.24) 

If the functions Yap are chosen to be the orthogonal 
trigonometric functions (2.12) multiplied by suitable 
coefficients they may be normalized so that 

(12.25) 

and the coupling coefficient becomes the simple ex- 
pression 

Klk = ’ blibki’ 
i 

(12.26) 

These results lead to the important conclusion that 
the product 

(12.27) 

may be negative. The driving force Qk is the differ- 
ence ~$k - @fi of the convective potentials of the sub- 
stance at each faces. Since this potential increases 
with the concentration, a negative value of Qk Qk 
represents a “contragradient” flow in the direction of 
the concentration gradient. This effect along with the 
presence of a strong coupling coefficient Klk is known 
as “active transport”. 

Note that from eqs. (12.16) we derive 

;dk~+C$$=2Ds=~Qk4,. (12.28) 
k i 1 

The total dissipation and entropy production remains 
positive as should be. As a consequence a negative val- 
ue of Qk ik requires the simultaneous coupled flow of 
at least two substances. 

The symmetric coordinate qk represents a substance 
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for which the same amount of flow occurs at each 
face. Substance for which qk = ZP vkP qp = 0 do not 
flow across the faces and correspond to “carrier mole- 
cules” which are present only in the membrane. Their 
behavior is represented entirely by the internal coor- 
dinates pi and {i. 

We have assumed a membrane of homogeneous 

properties across the thickness. The same linear anal- 
ysis may be carried out if the membrane is inhomo- 
geneous. In this ,case the coefficients of Cg depend on 
x. However the equations will not separate into un- 
coupled symmetric and antisymmetric groups. 

Periodic solutions cannot occur in the linear case. 

Such periodic solutions associated with some cases 
of active transport require an analysis based on the 
non-linear equations developed in the two preceding 
sections. 

13. General variational-lagrangian thermodynamics 
of collective systems 

In the foregoing analysis we have stressed chem- 
ical applications. However the methods are complete- 
ly general and are applicable to all thermodynamic 
systems of macroscopic physics. This development 
was initiated by the author in 1954 and further ex- 
tended and applied in a large number of publications. 
This development is briefly summarized hereafter. 

13.1. Linear lagrangian thermodynamics 

The development was initiated in the context of 

linear thermodynamics [3,2 1,221, and leads to the 
lagrangian equations 

(d/dt) (a y/a&>+ aDICk& + a ?//aqi = Qi, (13.1) 

where qi are perturbations from an equilibrium state. 
The kinetic energy 7 the dissipation function D and 
the mixed collective potential 9 are expressed by 
quadratic forms with constant coefficients. 

T=i!j crnijcji~,_, D=-1x b..g.Lj., 
0 2 ij U ’ J 

(13.2) 

and Qi are generalized mixed mechanical and thermo- 

dynamic driving forces. They may include non-mech- 
anical forces generated at the boundary by driving 
cells of potential 9’ which contribute terms -a9’/aqj 

to the value of Qi. The inertia terms are represented 
by (d/dt) (a T//ski). The forms 7 and D are positive- 
definite while 3 may be non-definite depending on 
the stability of the equilibrium state. 

In many problems we may distinguish external and 

internal coordinates qk and qa. The lagrangian equa- 
tions for this case are 

(d/{t) (a71aGk)t aD/a& t a9jaqi = Qi, 

ao/ali,ta3yaq, =o. 
(13.3) 

It was shown [ 19,2 1 ] that driving forces may be ex- 
pressed in terms of the external coordinates qk as 

Q, = F (‘lk + P2m[k) qk’ (13.4) 

where 

Zlk =c p s p+‘s D/? + D;k p + Dlkp (13.5) 

and p = d/dt is the time differential operator. The 
fractional operator expresses the following integral 
operation, 

-$-f(t) = jexp[rs(t’-t)] -$ dt’. 
S 0 

(13.6) 

In these expressions rs > 0 and the matrices Djsk), Dik 
and Dlk are positive definite. These results were ap- 
plied to viscoelasticity [3,2 1,221 . 

The treatment of active transport in section 12 

constitutes a particular case of eqs. (13.4). 

13.2. Nonlinear collective systems 

In the general nonlinear case the variational prin- 

ciple of virtual dissipation takes the form [4,23] 

S,3’t%i6qit~Xi6qi-Qi6qi=0, (13.7) 
i i 

where 6 R is a restricted variation which does not in- 
clude the entropy produced, and Zi are generalized 
inertia forces, The forces Xi are generalized dissipa- 
tive forces defined variationally by 

c Xi6qi = ST&* da, 
i A2 

(13.8) 
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which represents the virtual dissipation in the domain 
a to which the variational principle is applied. The 
variational equation (13.7) constitutes and extension 
of d’Alembert’s principle to dissipative thermodynam- 
ic collective systems. 

We may express the dissipative force in terms of 

qi and rate variables 4i as 

xi =Ri(q/‘Ql). (13.9) 

The general equations of evolution of the system de- 

rived from (13.7) are 

i33’/Plaqi+Ii+Ri-Qi=O. (13.10) 

A large number of thermodynamic systems are gov- 
erned by these equations, which in many cases may 
be written in the lagrangian form [4,23]. 

_arr +=+Ri = Qi. 
aqi aqi 

For quasi-reversible systems we may write 

Ri = aD/&j,, D = 1 c bij(ql) 4,. $, 
iJ 

(13.11) 

(13.12) 

where the dissipation function D is now a quadratic 
form with coefficients functions of qi. How to apply 
such equations in systems with large entropy produc- 
tion s* has been described in ref. [ 151 by introducing 
additional variables qi describing the scalar field s*. 

Qi we may incorporate the terms -Ci Qi qi into the 
value of 3 and the equation takes the form 

(didt) (as/aq + aDlad, + awaqi = 0. (13.14) 

If 3 may become negative the state of equilibrium is 
unstable. It was shown that dissipative structures ap- 
pear in this case and that their amplitude is propor- 
tional to real increasing exponentials, i.e. they are 
nonoscillatory [4,5]. The existence of such dissipa- 
tive structures for small deviations from a state of 
static equilibrium has been overlooked in the current 
literature [18,27] under the erroneous assumption 
that such structures require the system to be nonlin- 
ear while they appear as linear perturbations of a non- 
equilibrium state of flow. The perturbations in the 
latter case may be oscillatory. 

In the nonlinear case an interesting example is 
given by a layered viscous medium in steady compres- 
sive flow in the direction of the layers. Folding of the 
layers with a definite wavelength represents a dissipa- 
tive structure. It was shown [4] that this may be de- 
rived by applying the nonlinear lagrangian equation 

ao/aii=o, (13.15) 

with the dissipation function (13.12) and considering 
small perturbations around the state of steady flow. 
A large number of references regarding such problems 
may be found in ref. [28]. 

13.3. New heat transfer 
References 

For non-inertial systems with transport and diffu- 
sion the lagrangian equations are of the type 

avjaqi+aola4,=Qi. (13.13) 

Its application to heat transfer has been presented in 
detail in a monograph [ 191. It leads to a new approach 
eminently suited to systems analysis without using 
traditional heat transfer coefficients. Simple approx- 
imations lead to remarkably accurate results. Among 
the numerous applications we may cite also the work 

of Lardner [24], Prasad and Agrawal [25], Chung 
and Yeh [26]. 

13.4. Instability and dissipative structures 

For small deviations from an equilibrium state the 

perturbations satisfy eq. (13.1). For constant forces 
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