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Abstract. A recently developed variational principle of virtual dissipation along with 
a new approach to the thermodynamics of open systems is applied to coupled mass and 
heat transfer in a porous solid containing a fluid. General differential field equations are 
derived directly from the variational principle. A general energy flux theorem is formu- 
lated. Vapor-liquid phase transition and capillary condensation are discussed. Field 
equations for nonequilibrium adsorption are also obtained. Lagrangian equations with 
generalized coordinates are derived directly from the variational principle without use of 
the field equations. They provide the foundation of finite-element methods as well as of 
many other techniques particularly suitable in geothermal systems analysis. 

1. Introduction. A principle of virtual dissipation has recently been developed gener- 
alizing d’Alembert’s principle to nonlinear dissipative thermodynamic systems [ 11. This 
new principle is a natural outgrowth of earlier work providing a variational-Lagrangian 
formulation of linear thermodynamics [2]. Application of this variational principle pro- 
vides directly both the field equations of general continuous systems as well as the 
corresponding Lagrangian equations with generalized coordinates. The Lagrangian equa- 
tions thus obtained constitute a powerful tool for systems analysis of very complex 
physical and technological systems. They are formulated from basic physical invariants of 
the system without a priori detailed knowledge of the field differential equations. This is in 
contrast with current procedures which derive variational principles from the particular 
differential field equations for each type of problem. 

An important aspect of the new approach is its unified interdisciplinary nature, which 
embodies a complete synthesis between mechanics and thermodynamics. This is well 
illustrated by its application to the nonlinear thermorheology of continua [3] which covers 
a large category of phenomena. 

Another’innovation which has considerably enlarged the field of application of the 
variational technique is the development of an entirely new fundamental approach to the 
thermodynamics of open systems [4, 5, 61. The concept of “thermobaric potential” 
replaces Gibbs’ chemical potential and bypasses the well-known difficulties associated 
with it. Another essential concept which has been introduced is that of entropy convection 
which is given a precise definition. This has led to new results in the theory of chemical 
reactions [4, 51. Along with the principle of virtual dissipation, these new concepts were 
applied to the non-isothermal dynamics of Newtonian and non-Newtonian fluids [6]. 

* Received September 30, 1977. 
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Another application is to the non-isothermal finite strain mechanics of porous solids with 
a fluid mixture and nonporous solids with thermomolecular diffusion of solutes [7]. 

The present treatment is an application to heat and mass transfer in a rigid porous 
medium containing a single fluid. While the context is more restricted than in a concurrent 
paper [7], the fluid mechanics of the pore fluid is analyzed here in considerably more 
detail. In particular, phase transitions and capillary condensation are considered as well as 
nonequilibrium adsorption effects. New theorems are also derived which govern the 
energy flux. 

The results obtained earlier [7] may readily be combined with the present treatment to 
take into account solid deformation and coupled diffusion effects when the pores contain a 
fluid mixture. 

2. New concepts in the thermodynamics of open systems.We shall start with a brief 
account of newly developed concepts and methods [4, 5, 61. We consider a system 
constituted by a primary cell CP , a large rigid supply cell Cs and a large isothermal 
reservoir at a constant temperature T, called a thermal well TW. The cells C, and Cs with 
the thermal well TW constitute a “hypersystem”. In any reversible transformation the 
work accomplished on the hypersystem defines the collectivepotential. No external matter 
or heat is added to the hypersystem. Matter and heat are transferred internally within the 
hypersystem by a reversible process which involves the combined use of heat engines and 
mechanical pumps. 

In the particular case of a porous medium with a rigid matrix, we assume a primary cell 
of unit volume, containing a compressible viscous fluid in the pores. The fluid and the 
solid are assumed in thermal equilibrium at the temperature T. A large rigid supply cell 
contains the same fluid at the temperature To and pressure p,, . 

An important property of the collective potential ‘u is the fact that it depends only on 
the state variables of the primary cell. This can easily be shown by noting that by 
definition the collective potential is the internal energy of the collective system. We may 
write 

‘U=U+Ho (2.1) 

where ‘It is the collective internal energy of the pair of cells CP f Cs and H, is the thermal 
energy acquired by the thermal well. The quantities 2) and U denote increases from a zero 
initial value. Since the transformation is reversible the total entropy change of the 
hypersystem is zero. Hence 

S + (HJT,,) = 0 (2.2) 

where S is the collective entropy of the pair of cells CP + Cs . Elimination of H0 between 
Eq. (2.1) and (2.2) yields 

21 = ‘It - T,S . (2.3) 

The initial state of the primary cell for which we put U = S = V = 0 is chosen arbitrarily to 
suit the problem. The primary cell is considered to be jacketed and rigid while a mass m of 
fluid may be added in the pores by injection through the jacket. The thermodynamic state 
of the primary cell is determined by its temperature T and the mass m of pore fluid added. 
On the other hand, the thermodynamic state of the large and rigid supply cell is deter- 
mined by the same mass m of fluid which had to be extracted. Hence T and m, which 
define the state of the primary cell, also define the state of the collective system C, + Cs . 
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As a consequence U, S as well as 2, are completely determined by T and m. We have 
therefore referred to 2) as the cell potential. The cell potential may of course be considered 
as a measure of availability. However, its use as a new thermodynamic potential different 
from the classical definitions was introduced by the author as a basic concept in irrevers- 
ible thermodynamics [2] and referred to as a generalized free energy. In later years the 
term “exergy” was also used by some authors to designate related concepts. 

We now consider the transfer of a mass of fluid dm from the supply cell C, to the 
primary cell C, . This transfer is accomplished reversibly by the combined use of mechani- 
cal pumps and heat pumps and has been called a thermobaric transfer [4, 51. The work 
accomplished is written 

dW = $ dm . 

The differential coefficient $ is the thermobaric potential, [4, 51. Its value is 

(2.4) 

(2.5) 

where 

O=T-TO. (2.6) 

The integration is along an arbitrary path of continuous variation of pressure pr 
temper- 

ature T and specific mass p, and dS is the entropy differential of the unit mass along this 
path. The notation p in the upper limit of the integral denotes the pressure of an external 

&id in thermodynamic equilibrium with the pore fluid. Hence it is defined thermodynam- 
ically and is not necessarily the fluid pressure in the pores which in some cases cannot be 
clearly defined. For simplicity we have used the same notation p and T as variables along 
the path of integration and for their values at the upper limit of integration. Expression 
(2.5) was derived and discussed earlier [4, 51. It represents the reversible work necessary to 
extract a unit mass at the pressure p,, from the supply cell, bring it to a pressure p and 
temperature T in equilibrium with the primary cell and inject it adiabatically into it. This 
continuous process is accomplished reversibly by the simultaneous use of mechanical 
pumps and heat pumps. The first term in expression (2.5) represents the work of the 
mechanical pumps and the second term the work of the heat pumps operating between the 
temperatures T and T,, . 

Note that for an isothermal system with 19 = 0 expression (2.5) reduces to the “pressure 
function” 

of classical fluid mechanics. 
In addition to adding masses to the primary cell, we may also add heat directly by 

means of a heat pump. With the appropriate additional term, expression (2.4) for the 
increase of cell potential becomes 

dV = $ dm + 0 dst (2.8) 

where 0 dsT is the work of the heat pump required between the temperatures T and T,, in 
order to inject reversibly an amount of heat energy T dsT . The differential dsT is the 
increase of entropy of the primary cell due to this heat injection. This quantity is not a 
state variable. Actually, one of the state variables is the collective entropy S of the pair of 
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cells CP + C, . Its differential is 

dS = S dm -I dsT (2.9) 

where 

S(p, T) = /PILO dS (2.10) 

is the relative speciJic entropy of the fluid. Relation (2.9) derived earlier [4, 5] is obtained 
by considering the collective entropy increase of the system C, + C, including the mass dm 
when the latter is brought to equilibrium with the primary cell. This entropy increase is S 
dm. During reversible injection into C, the total entropy does not change; hence S dm 
represents the collective entropy increase of C,, + C, after addition of the mass dm to the 
primary cell C, . Therefore S dm is the increase of S due to convection, while dsT is the 
increase due to the direct addition of heat energy by conduction. 

Elimination of dsT between Eqs. (2.8) and (2.9) yields 

dU=cPdm+BdS (2.11) 

where 

@=$--es (2.12) 

is the convectivepotential [4,5]. The differentials in (2.11) are now state variables. It is now 
valid for irreversible transformations while (2.9) is not. We derive with m and S as 
independent variables, 

XI/am = a, au/as = e . (2.13) 

It is interesting to substitute the value (2.11) of & into Eq. (2.3). We find 

d%=@dm+TdS . (2.14) 

This is formally similar to the expression used by Gibbs [8] to define the chemical potential 
p as the differential coefficient of dm. However, there are several fundamental differences. 
First, U and S are the collective internal energy and collective entropy of the pair of cells 
C, + C, . Second, @ is not defined by Eq. (2.14) as the differential coefficient of dm but 
independently by Eq. (2.12). Hence relation (2.14) constitutes a theorem. Third, dS is 
defined in a precise way by (2.9) as the sum of convective and conductive terms. Finally, 
within a given hypersystem the variables in (2.14) do not involve any undetermined 
constants. 

The convective potential @ may also be written in a different form by introducing into 
Eq. (2.12) the values (2.5) and (2.10) for $ and S. We derive 

cP=:--TS (2.15) 

where 

pT ;= 
s ( 

dp + T & 
POT, P ) (2.16) 

is the increase of collective internal energy of the pair of cells C, + C, in the thermobaric 
transfer of a unit mass from C, to C, , We may also write 

(2.17) 
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where 

(2.18) 

Note that this integral represents the classical increase of the fluid internal energy per unit 
mass when its pressure and temperature vary from p,, , To to p, T. Hence t may be 
interpreted as the increase of specific enthalpy of the fluid when the pressure and temper- 
ature vary from p,, , T,, to p, T. In analogy with S, which was referred to as the relative 
specific entropy, we may call F the relative specific enthalpy of thefluid. 

In contrast with classical concepts and procedures, the quantities Cp, j and t are 
completely defined for a given hypersystem and do not involve any undetermined con- 
stants. 

3. Relations between state variables. Liquid-vapor transitions. In Eq. (2.11) for do 
we shall consider m and S as state variables of the primary cell of unit volume of porous 
medium. We recall that m is the mass of pore fluid added to the primary cell starting from 
an arbitrary initial state, of temperature T’ and pore Buid pressurep’. As already pointed 
out, the collective quantities U, S, and ‘u for the primary cell are put equal to zero in this 
initial state while m is initially zero by definition. 

The two state variables m and S are related to other state variables such as the 
temperature T, the pore pressure p, etc. We shall now examine in more detail such 
relationships. Note that we have defined the pore pressure p as that of the fluid located 
outside the cell and in thermodynamic equilibrium with the pore fluid. This takes care of 
all kinds of physical-chemical and capillary interactions in the pores. 

However, it is very instructive to consider the case where the interaction of fluid and 
solid is negligible. In this case it makes no difference if we consider the fluid to be located 
outside the solid. The pressure p, density p, and temperature T of the fluid obey the 
equation of state 

P = P(P, T> . (3.1) 

Its relative specific entropy, defined by Eq. (2.10), is 

PT 

&I, T) = 
s 

POT, ds ’ 

The volume occupied by the fluid in the pores is 

(3.2) 

m, + m f__ 
P ’ 

(3.3) 

where m, is the initial mass in the pores and f is the porosity, i.e. the pore volume per unit 
volume of porous medium. We may express p and S as functions of m and T: 

m, + m 

p=p s yT ( ) 
m, + m 

) 
j=j - 

( f ,T . > (3.4) 

Since the fluid is located outside the solid, the collective entropy S may be evaluated 
separately for the fluid and the solid and added together. The mass m, of fluid initially at 
the temperature T’ and density p’ = m,/f is brought to the temperature T and density p = 
(m, + m)/f. Its collective entropy increases by the most 
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m,[Qy, T] -i(T,Tl)] . (3.5) 

Another mass m of fluid is extracted reversibly from the supply cell and brought to the 
density p and temperature T. Its collective entropy increases by the amount 

The solid matrix is brought from the temperature ?” to T with an entropy increase 

S, = m, 
s 

TqdT, 
T’ 

(3.6) 

(3.7) 

where m, is the mass of solid per unit volume of porous medium and c,(T) its specific heat 
as a function of the temperature. The total collective entropy of the primary cell is the sum 
of the three terms (3.5) (3.6) and (3.7). We write 

S(m, T) = (m. + m)i y,T)-rnti{F,T) +S,. (3.8) 

This also provides the temperature T as a function of m and S: 

T= T(m,S) . (3.10) 

This relation may be represented in an entropy diagram, where T is plotted as a 
function of S yielding a family of curves defined by m as a parameter. In the region where 
liquid and vapor coexist, it also provides the saturation variable X representing the 
fraction of fluid mass in the vapor phase. Its value is X = 0 for a pure liquid phase and X 
= 1 for a pure vapor phase. 

Attention is called to the fact that S is a better state variable than T since in the wet 
vapor region the temperature does not provide any information on the amount of 
saturation described by the variable X. 

Assuming again no interaction between fluid and solid, we use the same reasoning to 
evaluate the collective internal energy U. We find 

‘U(m, T) = (m + m,,)li T, T)-m,ti(F,T) -mf+?Ls (3.11) 

where 

s 

T 

U, = m, c8 dT (3.12) 
T’ 

and ti is defined by (2.18) as 

ti = llo[-p d(f) + TdS] . (3.13) 

The term -mp,/p, represents the negative work of extraction of the mass m from the 
supply cell. 

Since T is a function of m and S by relation (3.10), we express 

?I. = U (m, S) (3.14) 

as a function of m and S. 



VARIATIONAL IRREVERSIBLE THERMODYNAMICS 25 

With this value for U, the collective potential (2.3) is 

U(m, S) = ‘U(m, S) - T,S . (3.15) 

It is interesting to verify expression (2.11) from this result by forming the differential 

do = a% - T& . (3.16) 

From (3.11) we obtain 

dm+(m+m,)dti+dU, . (3.17) 

Since the pore volume f is constant, Eq. (3.3) yields 

-(m+m,)d f = F - 
0 

(3.18) 

From this relation and Eq. (3.13) we derive 

(m + m,) dti = f dm + (m + m,)T dS . (3.19) 

With this value, expression (3.17) becomes 

a’% = Z dm + (m + m,)TdS + dIL, (3.20) 

where t is the relative specific fluid enthalpy defined by (2.17). 
Since du, = T dS, the differential of (3.8) is 

dS=Sdm+(m+m,)dS+ +L8 . (3.21) 

From relations (3.20) and (3.21) we derive 

d‘U=(E- TS)dm+ TdS (3.22) 

and with this value of &I, expression (3.16) becomes 

fi = (Z - Tj) dm + ~9 dS . (3.23) 

This coincides with Eq. (2.11) by introducing the value (2.15) of a. 
In the more general case where fluid and solid interaction may not be neglected, the 

values of S and U must be obtained from more elaborate physical-chemical theories or 
from direct physical measurement. In the latter case we integrate expressions (2.9) and 
(2.14), assuming a reversible process: 

S(m, T) = Jr: (S dm + dsT) (3.24) 

and 

%(m, T) = srnT(+ dm + T dsT) . (3.25) 
OT' 

In these integrals the values of j and @ are measured physically as a function of m and T. 
This requires the measurement as a function of m and T of the pore pressure p which, 
according to our definition, is the pressure of a fluid in equilibrium with the pore fluid and 



26 M. A. BlOT 

located outside the pores. For example, because of capillary effect the fluid may be in 
liquid form in the pores while in equilibrium with its vapor outside at a higher pressure 
(see below). This outside pressure and the temperature determine the values of S and +. In 
this more general case we may also determine an entropy diagram as described above. 

4. Mass balance, entropy balance, entropy production and flux coupling. The PO- 
rous medium is considered as a continuum. The rate of mass flow of the pore fluid per unit 
area of the medium is Mi , where the dot denotes a time derivative. Conservation of mass 
is expressed by 

ti = - (a&/ax,) (4.1) 

where xL are Cartesian coordinates and ti is the rate of increase of fluid mass per unit 
volume. Integrating (4.1) with respect to time with zero initial values yields 

m = - (aMJa&) . (4.2) 

In this relation m is the increase of fluid mass per unit volume, and ML , called the muss 
displacement [6,9], is the total mass of fluid which has been flowing per unit area since the 
initial time t = 0. Relation (4.2) constitutes a holonomic mass balance constraint. 

In order to express the entropy balance we consider the rate of flow of heat energy per 
unit area Hi . The rate of increase of entropy per unit volume due to fii is 

ST = 
_ 1 afi, . 

T ax, 
(4.3) 

In order to take into account the entropy convected we consider a domain Q of the 
continuum of boundary A. The rate of entropy increase of the whole domain Q is 

& = L & dS2 - [A Stigq dA . (4.4) 

The second integral is the entropy convected into Q through the boundary A, of unit 
normal nl , and S is the relative specific entropy of the fluid at the boundary. This 
convection term provides the key to the treatment of open systems. It is derived by the same 
reasoning as used in the derivation of Eq. (2.9) for the case of a reversible transformation. 
With the value (4.3) for & integration by parts yields 

A= l &* dQ - 
s 

$nl dA (4.5) 
A 

where 

ST* = - (ti,/p) (aT/ax,) (4.6) 

and 
$ = Sn;ri + (I&/T) . (4.7) 

The quantity &* is the rate of entropy production per unit volume due to thermal 
conduction while Si is the total rate of entropy flow. We put 

Si’ = l?i/T . (4.8) 

Hence 

s, = &, + S,’ (4.9) 



VARIATIONAL IRREVERSIBLE THERMODYNAMICS 27 

where &, is the rate of entropy flow due to fluid convection and Si’ is rate of entropy flow 
due to thermal conduction in the bulk fluid-solid medium. 

Eq. (4.5) may also be expressed as a volume integral 

hence we obtain the entropy balance equation [6, 71 

(4.10) 

(4.11) -t;‘* 

where S is the entropy per unit volume. It generalizes Meixner’s relation [IO] since it 
includes the entropy convection term Sni, of Eq. (4.9). Putting 

S = - (aSi/C?X,) (4.12) 

and integrating with respect to time with zero initial values yields 

S = (X$/ax,) (4.13) 

where s is the entropy supplied per unit volume by convection and conduction and SI is the 
total entropy displacement vector. This concept was introduced earlier in several pub- 
lications [l, 3, 6, 91. 

Note that Eq. (4.13) for the supplied entropy balance is analogous to (4.2) for mass 
balance and is also holonomic. This property plays an important role in the variational 
theory. 

In the most general case of anisotropy the law of thermal conduction is 

~T/~xL = - Ai, Ijj (4.14) 

where X, = Xji is the symmetric thermal local resistivity tensor of the bulk fluid-solid 
medium. Its symmetry is a consequence of Onsager’s principle [I 1, 121. It is a function 

Xl, = Xij (m, T, xk) (4.15) 

of the fluid mass increase m in the pores, the local temperature T and also of the local 
coordinates xk if the bulk medium is not homogeneous. With the values (4.8) and (4.14) 
Eq. (4.6) becomes 

&* = A,, 3,’ s,= (4.16) 

which yields the local rate of entropy production as a quadratic form in SiT with 
coefficients depending on m, T and xi . 

Until now we have assumed that the local rate of entropy production is due only to 
thermal conduction. Actually additional entropy production is due to the fluid flow rate. 
The rate of entropy production i* in this case is expressed by a straightforward general- 
ization of Eq. (4.16) as a quadratic form in &fi and SLT. We write 

Ti* = Cl/= &i&f, + 2CijTM&iSjT + TAijSiTSjT . (4.17) 

In the variational theory it is more convenient to consider the rate ofdissipation Ti* instead 
of S* [ 1, 3, 61. The coefficients are functions of m , T and location xI . The quadratic form 
embodies the local validity of Onsager’s principle [ll, 121 and symmetry properties 

cr,= = c,1=, x1, = x,1. (4.18) 



28 M. A. BlOT 

The cross-term coefficient CijTM represents the coupling between mass flow and heat flow 
as exemplified by the Knudsen effect [13]. 

With the total entropy production as expressed by (4.17) Eq. (4.11) retains the same 
form: 

s = - (&$/ax,) + s’* . (4.19) . 

Integration with respect to time with zero initial values yields 

S = - (a&/ax,) + s* = s + s* . (4.20) ’ 

This is the integrated form of the entropy balance equation. 
The thermodynamic state of the porous domain LI is completely determined by the 

scalar fields m and S. Eqs. (4.2) and (4.20) show that these state variables may be replaced 
by the two vector$elds Si and ML and an additional scalar s*. 

The rate of dissipation (4.17) may be written in terms of the variables si instead of St’ . 
From (4.9) we obtain 

$’ = $ - &fi . (4.2 1) 

Substitution of this value into (4.17) yields for the rate of dissipation 

Ti* = Cl,&‘iUj + 2Cij”UtSj + TAijSiS, (4.22) 

where 

Clj = CijT - (Cij TM f CjiTM)S + TA,S’ , 

CijM = C’ijTM - TAijS . (4.23) 

We note that if CijTM = 0 the coupling between hii and SiT vanishes; however, there 
remains a coupling term 

CljM = - TAijS (4.24) 

between AJfi and Si whose nature is purely convective. 

5. Variational principle of virtual dissipation. We consider the hypersystem consti- 
tuted by the porous domain Q the supply cell C, and the thermal well TW. An important 
property of the collective potential is its additivity. Hence we may write the collective 
potential of the domain s2 as 

v= s ‘UdQ (5.1) 
R 

where ‘UdQ is the potential of the infinitesimal cells composing the domain, and ‘u is its 
local value per unit volume. Also 

Tu = ‘Il. - T,S (5.2) 

where U and S are respectively the local values per unit volume of the collective internal 
energy and entropy of the cell, as defined in Sec. 2, in terms of the supply cell C, . 

In Sec. 2 the potential ‘u is defined by means of reversible work on the hypersystem. We 
shall now consider the completely general case of an irreversible transformation. The first 
principle of thermodynamics applied to the system constituted by the domain Q and the 
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supply cell C, is written in variational form as 

s 
6Udfl=JW-Ii6qi . 

I1 
(5.3) 

The left-hand side is the increase of collective internal energy of the system Q + C, . On the 
right-hand side we have the virtual work 6 W of the external forces applied to fi and the 
virtual work -IiSqi of the reversed inertia forces in the sense of d’Alembert’s principle. 
We denote by li the generalized inertia forces associated with the variable qi . Elimination 
of U between Eqs. (5.2) and (5.3) yields 

s 
(62) + T&S) = 6 w - zisqi . (5.4) 

R 

Variations are applied only inside 52. Hence the variation of total entropy produced in Q + 
C, is obviously 

l&S dfl = s, s* dQ (5.5) 

where as* is the variation of entropy produced locally per unit volume. Hence (5.4) 
becomes 

s 
(6W + ro 6~*) da = 6 W - 1i6qi. (5.6) 

R 

Furthermore, using the value (2.11) and the value (4.20) of S, we derive 

6W + T&Y* = 6,W + T&Y* 

where 

(5.7) 

(5.8) 

and 6, denotes a restricted variation obtained by varying only m and s, hence dropping 6s* 
in the variation of ‘0. Relation (5.6) becomes 

Ii698 + s (6,W + T&Y*) dfJ = 6 W. (5.9) 
R 

This constitutes the principle of virtual dissipation as derived earlier in a more general 
context [ 1, 31. In most problems the work of the external forces may be separated into two 
terms 

6W= -6Gf6W (5.10) 

where 6G is the virtual work of body forces derived from a potential field such is gravity, 
while 6 W’ is the virtual work of other forces. We put 

@=G+ s W dC2. (5.11) 
n 

This quantity is the mixed collective potential defined earlier [ 1,2] as a unified concept for 
the combined mechanics and thermodynamics of the system. By introducing the values 
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(5.10) and (5.11) the principle of virtual dissipation becomes 

1,6qi + 6,6 + 
s 

T&Y* dQ = 6W’. (5.12) 
R 

The integrand T6s* is the virtual dissipation per unit volume. 
We have introduced [I, 3] a local dissipation function which according to (4.22) is 

expressed as 

a = 3 TS* = 4 C’,jJflM, + Cij“‘JliSj + 4 TAijS,Sj . (5.13) 

By Euler’s theorem on homogeneous functions the local rate of dissipation may be written 

23) = Tj* = 

Hence the virtual dissipation due to variations AMi and SSi is 

(5.14) 

(5.15) 

By definition the values of the dissipative forces aZD/‘aA?i and LJCD/CYS, remain frozen 
during the variations [l, 31. 

6. Variational derivation of the field equations of mass and heat transfer. The me- 
chanical and thermodynamic state of the porous domain R is completely described by 
three fields. They are the vector field Si of entropy displacement, the vector field ML of 
pore fluid mass displacement and the scalar fields* of entropy produced per unit volume. 

We may vary these field variables arbitrarily inside the domain with zero variations at 
the boundary. The virtual work of the inertia forces is 

m, + m)ai 6ui dfl (6.1) 

where ai is the fluid acceleration, 6~~ its virtual displacement and m, + m is the mass of 
fluid per unit volume, m, being the initial value. Since 

(m, + m)6ui = 6Mi , (6.2) 

the variation (6.1) becomes 

KiSqi = 1 a$Mi dQ . (6.3) 
R 

If we denote by $j’(xi) the body force potential per unit mass, we may write 

G= 
s 

(m + m,)s dQ 
n 

and 

6G = l$PrndQ. 

From (5.8), (5.11) and (6.5) we derive 

(6.4) 

(6.5) 

6,6 = s (cpc?m + 86s) dQ (6.6) 
n 
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where 

cp=a+$j (6.7) 

is a mixed convective potential. 
For the isothermal case 19 = 0 we obtain 9 = $ where # is expressed by (2.7). The 

potential (6.7) then coincides with the expression obtained by Hubbert in his formulation 
of Darcy’s law [14]. 

We now introduce the values (5.15), (6.3) and (6.6) of the variations into the varia- 
tional principle (5.12) with 6 W’ = 0. This yields 

Using the holonomic constraints (4.2) and (4.13) we write 

We introduce these values into (6.8) and integrate by parts. Variations 6SI and 6Mi are 
arbitrary and are chosen to vanish at the boundary. We therefore equate to zero the 
coefficients of these variations in the integrand and obtain 

al+g-+-g=o, 
1 1 

g+g=o . 
1 1 

To these six equations we add a seventh equation (5.14), i.e. 

TP = 2D . (6.11) 

Together they govern the seven field components M1, S, and s*. 
The acceleration of the fluid is 

3Vi 
al = - + v, 2 

at J 
(6.12) 

where the average fluid velocity is 

v1 = ni,/(m, + m) . (6.13) 

The acceleration may be written in several well-known alternative forms. For example, 
multiplying eq. (6.12) by m, + m and taking into account the condition of mass con- 
servation 

am/at = - (ani,/ax,) , (6.14) 

we obtain 

(m, + m)ai = (6.15) 

which brings out the change and flow of momentum. 
Another form is obtained by introducing the vector 

Q. = v X curl v (6.16) 
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where v is the velocity L+. The acceleration is 

ah 1 au2 
U(=at+T~-&i (6.17) 

where @,i are the components of (3 and v2 = vivi . It is interesting to note that ai = 0 in 
one-dimensional, axially symmetric, and spherically symmetric flows. 

Another form of the field equations (6.10) is obtained if we vary SLT instead of S, , The 
virtual dissipation in this case is obtained by using a dissipation function DT derived from 
(4.17) and expressed in terms of tiL and SIT. We write 

aT = iTi* = ~C,,TIGf,ld, + Cl,TMA$iS,T + &TX$GtTSJT . (6.18) 

The virtual dissipation in this case becomes 

(6.19) 

We substitute the value (6.19) for T&s* instead of (5.15) into the variational principle 
(5.12) and integrate by parts, taking into account the constraints (6.9) for dm and 6s. We 
obtain 

CZil3Mi + 6M,+g6SiT dS2=0 . > (6.20) 

From (4.9) the variation of 6Si is 

6S1 = S6M1 + 6&T . (6.21) 

We introduce this value into the variational principle (6.20), where 6M, and &StT are now 
arbitrary, and equate to zero the coefficients of these variations. Taking into account the 
values (2.5) and (6.7) of # and cp we derive 

a +Lap+i%+~=o 
I 

p ax, ax, aMi 7 
g+_= aV o 

1 a&T ’ 
(6.22) 

This brings out explicitly the fluid pressure gradient in the field equations. For &, = 0 the 
last equations express thermal conduction. 

Capillary condensation. The field equations (6.10) are valid if the fluid is a vapor 
which condenses as a liquid as concave droplets on the walls of the pores. Because of local 
equilibrium the value cp is the same whether referred to the vapor or the liquid. However, 
in this case the velocity and acceleration of the fluid are different for the vapor and the 
liquid. This may be taken into account by defining an average accleration al such that 
ai8Mi represents the virtual work of the inertia forces. The field equations retain the form 
(6.10) because they involve only the total mass displacement of vapor and liquid. The 
effect of capillary condensation is embodied in the coefficients of the dissipation function 
which depend on and the fraction X of vapor present. Hence according to the entropy 
diagram the coefficients may be expressed as functions of m and s. It should be noted that 
in a more refined treatment a hysteresis effect should be introduced in these functions of m 
and S because condensation actually depends on the time history of the system. 

In the case of capillary condensation the vapor pressurep, is different from the liquid 
pressurep, . This is due to surface tension. However, + and hence also cp = @ + s are the 
same for both fluids since local equilibrium is assumed. The fluid pressures are easily 
evaluated by considering the convective potential @T of the fluid at the pressure p and 
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temperature T for a plane liquid-vapor interface. We may write 

@_I&_= -= 
s 

PJdpv 

pT PV s 
PLT d& 

(6.23) 
PT PL 

where pv and pL are respectively the vapor and liquid densities. If the pressure differences 
are small, Eq. (6.23) yields approximately 

(pv - P)/Pv = (PL - PVPL (6.24) 

where p and pL are vapor and liquid densities at p and T. 
The difference 

pv - PL = PC (6.25) 

is called the capillary pressure [ 151. Solving Eqs. (6.24) and (6.25) forp, andpL, we obtain 

pv=p-A p sp-pvp 
PL - Pv c c 9 PL 

pL=p-A 

PL - Pv 
“p-pc . (6.27) 

When the condensed liquid presents concave surfaces, pc > 0. For example, if the 
concave surface is a hollow hemisphere of radius r, 

pc = 2y/r (6.28) 

where y is the surface tension. Hence in this case 

PL < pv <p . (6.29) 

7. Energy flux theorem. A very general and fundamental energy flux relation may be 
derived directly from the field equations (6.10). We add these field equations after 
multiplying the first three by &Ii and the last three by Si . Taking into account expression 
(5.14) for T.i* and noting that afI/as, = c?T/c?x~, we obtain 

(7.1) 

By introducing the values (4.2), (4.13) from m and s and noting that according to (4.20) we 
may put $ = J: + S*, Eq. (7.1) becomes 

&,a, + & (p&l + TS,) + (~lj2 + Ts = 0 . (7.2) 
i 

The last terms may be expressed in the following form: 

cpriz + 2% = @ti + t% + $+I + T,$ . (7.3) 

From relation (2.11) we derive 

9, + eS = i, (7.4) 

and from (2.3) 

i, + T,$ = ?i”. (7.5) 



34 M. A. BIOT 

Hence Eq. (7.2) becomes 

iZ;l,a,+~(rpiUi+TS1)+~+grlr=O . (7.6) 
1 

The kinetic energy may be introduced in this equation by using the value (6.17) for al . f 
Since the vectors A?, and C?,, are perpendicular we have 

A?& = 0 . (7.7) ~ 

We derive 

(7.8) 

By definition (6.13) the rate of mass flow is 

lG?i = &Vi 

where m’ = m + m, is the total fluid mass per unit volume. We may write 

(7.9) 

(7.10) 

By taking into account the condition of conservation of mass (6.14), substitution of the 
values (7.10) into (7.8) yields 

Miai = 2 at -!- a (m’u”) + + & (&fLuz) . 

With this value Eq. (7.6) becomes 

(7.12) 

where 

FL = (PII? + TSi + ikiv’ (7.13) 

is the energy flux vector. Eq. (7.12) constitutes the energy flux theorem. The energy flux 
may be written in a form related to a more familiar expression by expressing cp in terms of 
the relative specific enthalpy Z. From (2.15) and (6.7) we derive 

p=@+g=Z-Ti+‘$ . (7.14) L 

By introducing this value of cp and the value (4.9) for 9, into expression (7.13) the energy 
flux becomes .’ 

Fl = (E + $j’)Qi + TSiT + ~IQ~v’ . (7.15) 

The term 

represents the heat flux by conduction 
In one-dimensional steady flow A’, 

TSiT = I-i, (7.16) 

in the compound fluid-solid medium. 
= const., we neglect the conductive heat flux and 
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the kinetic energy, and Eq. (7.12) reduces to 

E + S = const. (7.17) 

For example, in a geothermal problem with vertical fluid flow it means that the relative 
specific enthalpy decreases by an amount equal to the increase of gravity potential $j. If $ 
= 0 the relative specific enthalpy Z is constant. As a consequence we derive the well-known 
Joule-Thomson effect of vapor expansion through a porous plug. 

8. Non-equilibrium adsorption. The foregoing results are applicable to the case of 
solid-fluid interaction represented by surface adsorption in the pores provided local 
equilibrium is assumed. However, the local equilibrium assumption is not valid with time- 
dependent adsorption. The variational thermodynamic theory is readily generalized to 
such cases. We consider separately the mass displacement ML’ of the fluid in the pores and 
the mass displacement Mla in the adsorbed layer. We put 

ma = v[ - aMia aMi' 
aXi ’ mf =-v(-- 

aXi ’ 

where m, and m, are the masses adsorbed and pore fluid added per unit volume of porous 
medium. The quantity v[ represents the mass adsorbed from the fluid with a coefficient v 
and a variable t equal to zero in the initial state. The field variables are now MID, Mif, Sl, 4: 
and s*. The collective entropy per unit volume is 

where s* is the entropy produced and Si the total entropy displacement. The collective 
potential is 

‘u =wbb,m, 3s) (8.3) 

and 

dW = +‘a dm, + af dmf + OdS. (8.4) 

The convective potentials @.a and af are derived in exactly the same way as in Eq. (2.11) 
using corresponding thermobaric potentials. The rate of dissipation is 

TP = 23’ + g A(m, , m, , S) (8.5) 

where 

! 6)’ = LD’(ma, m,, S, ti;lia, ll;Ii, Sj) (8.6) 

is a quadratic form in &‘;Ji’, hiif and Si with coefficients functions of m, , m, and S. The 
quantity A, also a function of m, , m, and S, plays the role of an affinity. If the medium is 

. 
nonhomogeneous the values of XI’ and A may also depend on the location xl. An 
expression for A is obtained by considering Eq. (2.3) with the value (8.4) for du. We write 

‘it - T$ = cP,tit, + aftif + BS. (8.7) 

Consider a transformation such that ala = nitf = Si = 0. This implies ti = 0 andS = 
S*. With these values Eqs. (8.5) and (8.7) become 

Ts’* = Af’, TS* = v(Qf - a&. (8.8) 
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Hence 

A = v (a, - aa). (8.9) 

At equilibrium A = 0 and @f = @)a . 
The rate equation for t may be written in the form 

A = t K (m, , mf, 9. (8.10) 

Hence (8.5) becomes i 

TP = 29 (8.11) 

with a dissipation function 
Q = a>’ + iKf2. (8.12) 

We now impose arbitrary variations aMi’, 6MLf, 6Si and S[ on the field variables. 
Application of the principle of virtual dissipation, following exactly the same procedure as 
in Sec. 6 leads to the field equations 

_&I 833 0 apf +aa>=() +--=, - 
8Xi aML” 8Xi aMi’ ’ 

A+$$=& 
(8.13) 

where pa = @‘a + $ and ‘p, = Qf + $j’. For simplicity we have neglected the accelerations. 
In the more general context of irreversible thermodynamics the variable [ plays the 

role of a local internal coordinate, and the system exhibits viscoelastic properties discussed 
quite generally in earlier linear theories and more recently in the nonlinear case [3,7]. The 
nature of the adsorption is quite general. It may include relaxation effects of fluid 
penetration in micropores. 

9. Lagrangian equations and finite-element methods. The principle of virtual dis- 
sipation (5.12) leads directly to Lagrangian-type equations which provide a powerful tool 
for systems analysis in very complex technological problems. In particular, they are ideally 
suited for the treatment of geothermal systems. The method has been derived and applied 
repeatedly in earlier work [l, 2, 31. More recently it was applied to the non-isothermal 
analysis of deformable porous media containing a fluid mixture [7]. As an illustration we 
shall apply the method to the case of a porous medium with non-equilibrium adsorption 
analyzed in sec. 8. For simplicity we shall assume that the accelerations are negligible, and 
that the entropy produced s* may be neglected in the value (4.20) of S. The medium is then 
described by variables 

Mia = MiYqlqz ’ ’ ’ qn XL>, 

(9.1) 

where qi are n generalized coordinates. We write the principle of virtual dissipation (5.12), 
putting Ii = 6W’ = 0, as 

66’ + s TW dQ = 0. (9.2) 
R 
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In the variation of 66’ we have substituted the total variation 6 instead of the restricted 
variation 6, since s* is neglected in the value of S. Furthermore 6” is defined as 

66’ = 66 i- thi6SidA + pnJM, dA 
s A s A 

(9.3) 

where 

6 = 
s 

[U + (m, + m, + m,)$JdQ. (9.4) 
n 

The unit normal to the boundary A of 52 is denoted by ni , 
The quantity 6’ represents the collective potential of the domain Q plus an additional 

domain CA represented by driving cells distributed along the boundary A. This is done 
because application of the variational principle requires that no variations are applied at 
the boundary of the total domain Q + CA . However, variations need not vanish at the 
boundary A of Q. The virtual dissipation is derived from expressions (8.12) for D: 

This may be written 

with the total dissipation function 

D = nDdD = +,,(q&jlg,. 
s 

(9.6) 

(9.7) 

It is a quadratic form in i1 with coefficients functions of qi . Substitution of (9.3) and (9.6) 
into the variational principle (9.2) and cancellation of the coefficients of 6qr yields the n 
Langrangian equations 

g+ g= Qi 

where 

Qi = - / (enj % + cp nj _‘?$!!) dA A 1 I 

(9.8) 

(9.9) 

is the generalized thermodynamic driving force. 

I 
These equations are the same as those obtained in heat transfer problems. Numerous 

techniques for the use of these equations have been developed [9] and are applicable here. 
5 

Finite-element method. The Lagrangian equations (9.8) yield immediately a large 

7 variety of finite-element methods. For example, we may divide the domain Q into tetrahe- 
dral elements whose vertices constitute the nodes of the network. Values of the variables 
MiQ Ml’ Si and [ at the nodes may be chosen as generalized coordinates qi while their 
values inside tetrahedral cells are determined by linear interpolation of the values qi . 

If needed, the value of s* may be taken into account, as already suggested in [7], by 
introducing the values of s* at the vertices as additional unknowns and using linear 
interpolation for the value s* inside the cells. The required additional equations are 
obtained by verifying Eq. (8.11) at each node. 
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