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New Variational Irreversible Thermodynamics 
of Open Physical-Chemical Continua 

M. A. Biot 
Royal Academy of Belgium, Bruxelles, Belgium 

ABSTRACT 

An outline is presented of a new thermodynamics of open chemical systems combined with a prin- 
ciple of virtual dissipation which provides a unified approach in a large domain of continuum 
physics, including deformable solids and fluid mixtures. 

1. INTRODUCTION 

A new thermodynamics of open irreversible systems has been developed overthelast twenty years. 
There are two complementary aspects to this development represented on the one hand by a var- 
iational principle of virtual dissipation and on the other by an original treatment of open 
systems based on new concepts which eliminate the traditional difficulties associated with the 
classical approach of Gibbs, while avoiding the ponderous statistical treatment. The varia- 
tional analysis is based on fundamental physical invariants and generalizes d'Alembert's prin- 
ciple to all dissipative systems. Thus unifying thermodynamics and classical mechanics. APP- 
lication of this variational principle yields directly the differential equations which govern 
physical systems. This variational approach turns out to be an essential feature in many prob- 
lems oxd not just a formal accessory of the anaZysis. This is in contrast to usual variational 
procedures which are derived from the differential equations themselves as a prerequisite. The 
emergence of this new thermodynamics is particularly timely in view of the current interest in 
the economics of energy production in large complex systems. Our purpose here is to present a 
short review of this new development in the context of continuum physics. 

2. THERMOBARIC TRANSFER: A NEW CONCEPT 

The basic concept in the new analysis of open systems is derived by considering a hypersystem 
constituted by a primary cell Cp supply cells CSk and a thermal well IW (Fig, 1). The open 

primary cell Cp contains a mixture of substances k. Each of the large rigid supply cells CSk 

contains a substance k, all at the same pressure and temperature pOTO. The choice of the same 

pressure and temperature for the supply cells is dictated by the requirement to avoid Gibbs' 
paradox [l]. The thermal well TW is a large rigid reservoir at a constant temperature TC. A 

mass dMk of a substance is extracted from C 
Sk 

and injected into CP by a reversible process. We 

call this a thwmob&c tranafeer (1, lo]. 

Fig. 1. Hypersystem, primary cell Cp, supply 

cells C 
Sk' 

thermal well TW. 

Consider the thermobaric transfer of a unit mass 
of substance k. The mass is extracted from the 
supply cell compressed and heated to the pressure 
pk and temperature T when it is in equilibrium 

with the mixture in C p through a semipermeable 

membrane. It is then injected reversibly and 
adiabatically into CP. This process is accom- 

plished entirely through external work on the 
hypersystem. No external heat or matter is pro- 
vided to the hypersystem from the outside. The 
heating of the mass transferred is accomplished 
by reversible heat pumps, extracting heat from 
TN. The work accomplished in the thermobaric 
transfer of this unit mass is' 

29 
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pkT 

ek= \ 

POT0 

(5 + O'dgk> . (2.1) 

It defines the thermobaric potential [l, 101. The pressure pi the density p' and temperature 

T' vary continuously along the path of integration. The heat added at each step is T'dsk where 

dTk is the increase of specific entropy. The term 6'dgk where 8' = T' - To represents the work 
of the heat pump at every step. 

By definition the equilibrium pressure pk of the substance with the mixture in C 
P 

through a 

semipermeable membrane is the partial pressure of the substance in the mixture. 

3. COLLECTIVE DEFINITION OF THE ENERGY AND ENTROPY OF AN OPEN CELL 

The state variables of Cp also determine the state of the supply cells CSk since the masses 

added to Cp are equal to the masses extracted from C 
k Sk 

. We denote lf and S respectively the 

collective energy and entropy of the system C 
P+l 'Sk' 

These quantities depend only on the 

state variables of C . 

as an open cell [l, :O]. 

Hence we may consider U and S as defining the energy and entropy of Cp 

An initial state for which U = S = 0 may be chosen arbitrarily since 
U and S are defined as incremental quantities, 

With these definitions the increase of entropy of C, due to thermobaric transfer of a mass dMk 
of a substance is 

dS = zkdMk , 

_- r 

where 
pkT 

- 
/ - 

'k = pOTO dsk 

is called the relative specific entropy of the substance in the mixture [1 1. 

4. CELL POTENTIAL 

From U and S as collective concepts we derive another collective concept 

v=u- 
ToS 

(3.1) 

(3.2) 

(4.1) 

which we have called the cell potential [l]. With the collective definition of U and S it 
extends the concept of generalized free energy which I have shown to be the basic thermodynamic 
function of nonequilibrium thermodynamics in 1954-55 [6, 71. An important property of the cell 
potential is derived by considering a reversible transformation of the hypersystem obtained 
entirely through external work on the system, no masses or heat being exchanged with the envir- 
onment. Since the transformation is reversible there is no change of total entropy of the hy- 
persystem, hence 

HO 
s+y=o, (4.2) 

0 

where Ho is the heat energy acquired by the thermal well. Elimination of S between (4.1) and 

(4.2) yields 

V=U+HO. (4.3) 

Hence for a reversible transformation V represents the energy of the hypersystem 113. 

5. DEFORMABLE OPEN CELL 

When a chemical reaction occurs in the cell the masses "produced" by the reaction 5 are given 

by 

dmk = vkdc , (5.1) 
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k 
where the condition Cvk = 0 is imposed by mass conservation. The state of the cell is deter- 

mined by the six strain components E 
W' 

the masses Mk added by convection into CF, the tempera- 

ture T and the reaction coordinate 5. Any differential change of state is the sum of the 
change due to the chemical reaction dg and the change due to other variables. For a chemical 
reaction occurring in a 

dll =o, 
ch 

where 

ds 
ch 

= $ dg 

is the entropy produced 
Donder [Z]. If several 

For a general change of 
each variable 

rigid closed adiabatic cell we may write 

W = -T04Sch , (5.2) 

(5.3) 

by the reaction. The quantity A is the affinity as defined by De 
reactions 5 

P 
may occur, AP denotes the affinity of each reaction. 

state the increase of cell potential is the sum of increases due to 

k 
dN = 'I uvdeuv + l$,dMk + eds 

TO 
T 
-r Adc E . 

P P 
(5.4) 

The first three groups of terms in accordance with (4.3) represent the reversible work accom- 
plished on the hypersystem. The first group r ds 

uv uv 
is the work accomplished by stresses ap- 

plied to the cell. It represents a summation for all possible values of the indices, where 

E 
!Jv 

are six parameters defining the deformation and r 
!Jv 

corresponcing forces defined by vir- 

tual work. They are not necessarily tensors. The second group E$,dMk is the reversible work 

accomplished by thennobaric transfer of masses d 
Mk P' 

into C The term gdsT with 8 = T - To is 

the work of the heat pump required to inject reversibly into Cl, an amount of heat TdsT. Taking 

into 

Note 

account equations (3.1) and (5.3) the increase of entropy of CF is 

k 
& = $ dc + 1 skdMk + dsT . (5.5) 

that dsT is not a state variable. Elimination of dsT between (5.4) and (5.5) yields 

k 

dV = r FIv TV + l@kdMk + 6dS - ds A d5 
P P' 

(5.6) 

where 

$k = $k - esk (5.7) 

defines a new concept, the convection potent&$: wh&h replaces the chemical potential. Note 

@k $k 
and sk do not contain any undetemfned constants. that in contrast to traditional concepts 

In (5.6) all differentials are now state 
obtain 

v = VkV, $9 s, Sp) (5.8) 

with the property 

variables. Integrating along any arbitrary path we 

av 
z--=T 

_?!i=(, 
?JV pv aMk 

N-0 2s-A . 
k as a6 

P 
P 

(5.9) 

6. NEW EXPRESSIONS FOR THE AFFINITY AND HEAT OF REACTION 

The thermobaric transfer procedure provides immediately a new expression for the affinity. We 
consider two rigid cells CF and C 

eq 
where a reaction of coordinate 5 may occur. In C the 

eq 
reaction is in equilibrium at the temperature T 

eq 
and partial pressures p 

keq' 
The reaction dg 

takes place in CF and a reversed reaction -dg takes place in C 
eq' 

The masses dmk = vkdg pro- 

duced in Cp are extracted from CF and injected into C 
eq 

by thermobaric transfer. At the same 

time the temperatures of Cp and C 
Eq 

are maintained constant by injecting respectively into CF 

and C 
eq 

amounts of heat equal to hpTdc and -pqdg using heat pumps. Hence the composition and 
PT 

temperature of CF and C 
eq 

do not change in this process. Since the reaction in Ceq is in equi- 

librium it does not produce any entropy. However the reaction CF produces the entropy (A/T)dE. 
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This must be equal to the entropy increase of the thermal well [l] as expressed by the relation 

A 
'kT 

-= 
T "k/ 

'keqTeq 

d;k - 
ipq 

$JT+~~T. 

eq 
(6.1) 

Similarly there is no change of collective energy of the system. This yields the relation [l]. 

where 

T; 
PT 

- i$ = ; vk ykT drk , 

'keqTeq 

dFk = dp'. + T'dsk 

"k 

(6.2) 

(6.3) 

is the differential of the specific enthalpy of each substance. 

The intrinsic heat of reaction h 
PT 

is a new concept [l]. It is the heat absorbed per unit 

change of the reaction coordinate 5 while the state of the system remains unchanged by removing 
the reaction products (positive or negative) and maintaining the temperature constant. It is 
more representative of the true chemical energy than the traditional heat of reaction which in- 
cludes the heat of mixing. Equation (6.2) yields ?; _ which introduced in (6.1) provides the 
value of the affinity A. 

In differential form equation (6.2) is 

Pl 

dT; pT = ; vkdp 

which generalizes rigorously the classical Kirchhoff relation for the heat of reaction. 

7. NEW DEFINITION OF THE CHEMICAL POTENTIAL 

We assume that in integral form we may write (6.4) as 

IT pT = f vk rTdFk + t VkZk(0) , 

(6.4) 

(7.1) 

where the lower limit is extrapolated to the absolute zero, with a constant of integration 
k 
CvkFk(0) such that Fk(0) is characteristic of the pure substance and independent of the reac- 

tion involved. Moreover we assume the validity of the relation 

pq k 'kT 
+lv,, dGk 

eq 0 

whose justification is related to Nernst's principle. 
(7.2) into (6.1) yields 

with 

A= -! 'kpk 

abs -abs 
pk = Ek - Tsk > 

abs _ 
'kT 'kT 

Ek 
--abs = dFk +Ek(C) , sk / dzk - 

0 

(7.2) 

Substitution of expressions (7.1) and 

(7.3) 

(7.4) 

Equation (7.3) provides a new definition of the chemical potential uk[3, 141, Use of the chemi- 

cal potential is of course not necessary if we know the reference equilibrium state of equations 
(6.1) and (6.2), which are rigorous consequences of the first and second principle in classical 
form. 

8. COLLECTIVE POTENTIAL 

Consider a continuous system composed of elementary primary cells of volume da in the initial 
state of coordinates x 

i' 
The collective potential of the continuum is 



Irreversible Thermodynamics 33 

“=PdR ’ 
where V is the cell potential in the final state per unit initial volume. Similarly 

(8.1) 

H = j UdR , s=jsdil, 
a n 

where U and S are collective values per unit initial volume. 

V = U - TOS . 

If the continuum is in a body force field of potential G(;;i) 

its total potential in the field is 

G = / m G(Ti)dS2 
n 

with 

kk 
m = m0 i- CM , 

where m0 is the initial mass per unit initial volume, and Mk is the mass of each substance in- 

(8.2) 

Hence according to (4.1) 

(8.3) 

per unit mass at the point xi, 

(8.4) 

(8.5) 

jected into the element also per unit initial volume, 
displaced to the point 

The element initially at point xi is 

- 

xi 
=xi+u . 

i 
(8.6) 

The mixed coZk&ve potential as introduced earlier 11, 4, 51 is defined as 

P=V+G. (8.7) 

It constitutes an extension of the generalized free energy which, as shown originally in 1954- 
55 [6, 71, provided the basic potential in a new and systematic treatment of nonequilibrium 
thermodynamics. The concept has been applied repeatedly in many problems including those of 
dissipative piezoelectric crystals [8, 91. 

9. PRINCIPLE OF VIRTUAL DISSIPATION 

Extension of d'Alembert's principle of classical mechanics leads to a new variational princi- 
ple [5] applicable to irreversible thermodynamic systems called the principZe of virtual dis- 
sipation. It is expressed for continuous systems in the form [5] 

I 
&Sqi + 6RP + / TGs*dC = 6W o 

R 
(9.1) 

The arbitrary variations to be applied are specified as follows. 

The term 6W is the virtual work of external forces applied to the continuum in addition to 
i 

those due to the potential field G, while CIISqi represents the virtual work of the inertia 

forces according to d'Alembert's definition. The variable s* denotes the entropy produced per 
unit initial volume, and T is the temperature of the displaced element. The entropy S perunit 
initial volume is 

s=s+s*, (9.2) 

where s is the entropy acquired by convection and conduction. We remember that this entropy 
is defined as a "collective" concept. The symbol 6R indicates a restricted variation which 

assumes that in varying S in p we put 6s" = 0 hence 6s = 6s. The integrand is the local vir- 
tual dissipation as explained below. 

Independent variables to be varied arbitrarily are the solid displacement ui the entropy dis- 

placement Si the mass displacements Mi of each substance and the reaction coordinates 5 . The 

rate of mass flow is tit (dot = time derivative) at the displaced point across a materia? sur- 

face initially of unit area and initially perpendicular to xi. The rate of entropy flow is 
similarly defined. It is equal to [lo] 
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(9.3) 
k 

where fi i is the rate of heat flow across the some material area and I Gk$ is the convective 

entropy flux. The variables satisfy the hoZonomic conservation constraints 

Mk = 
aM; as 

-axi' 
s=_i 

axi 
(9.4) 

(summation sign omitted). The six strain components Euv(aij) are expressed as functions of 

aui 
aij =axj * (9.5) 

The strain components may be defined in a very general way either as Green's tensor, or as a 
Cartesian tensor relative to rotating Cartesian coordinates or in nontensorial fashion as ex- 
plained in more detail elsewhere [4, lo]. 

When applying the variational principle to the domain C the variations 6ui 6$ 6Si &So are ar- 

bitrary except for one restriction, namely that the normal components of bM: and 6Si vanish at 

the boundary of Q. Note that only the variations vanish and not the values of Mi and S them- 

selves. 
i 

The virtual dissipation is derived from the rate of dissipation expressed as 

(9.6) 

where 

‘J-&k = RP ip + m, , 

is a quadratic form in 
1. 

and 5, with coefficients dependent 

(9.7) 

on the local state variables E 
?Jv' 

MK, s and 5 
P' 

while X 
ij 

represents the local thermal resistivity. The quadratic form implies 

the local validity of Onsager's principle 111, 121. It generalizes Meixner's result [13] which 

is restricted to thermal conduction. The coefficient Ck 
ij 

represent a coupling which includes 

entropy convection. The second principle of thermodynamics implies 

UT> 0. 

The coefficient Rp(sPVMk Sip) embodies the chemical kinetics. 

rate of reaction as 

ip = fp(E,,V, Mk, s, Sp) 

and the affinity 

Ap = A (E 
P PJ’ 

Mk, s, So) . 

Elimination of co between these two relations yields 

A = R (E 
P P PV’ 

Mk, s, $1 . 

The virtual dissipation is obtained from (9.6) as 

T~s* = t RpG$ + 
aDT 

6M; +a~ 6Si . 

i 

(9.8) 

It is obtained by writing the 

(9.9) 

(9.10) 

As a consequence of the second principle the function R has the properties 
P 

Rp = 0 for i = 0 
P 

(9.11) 

(9.12) 

(9.13) 



Irreversible Thermodynamics 35 

10. FIELD DIFFERENTIAL EQUATIONS FOR A DEFORMABLE PHYSICAL-CHEMICAL SOLID WITH BODY FORCES 

The variational principle (9.1) is applied to a deformable solid with chemical reactions and 
thermomolecular diffusion putting 6W = 0. For simplicity we shall not include the inertia 
forces. A more complete analysis is presented elsewhere [lo, 141. The variations under the 
integral sign are evaluated using the holonomic constraints (9.4) and (9.5). We then integrate 
by parts and put equal to zero the coefficients of the arbitrary variations 6ui 6Mi 6Si and 

65,' Using the values (5.9) for the partial derivatives of V we obtain 

%+aD,=0 
’ ax, ar;lk ’ 

i 

-Ap+R =0, 
BDT 

P 
-$+_=o. 

i asi 
We have put 

‘pk = t’k +G 

(10.1) 

(10.2) 

which has been called mixed convective potential [3, 101. The unknown field variables governed 
by equations (10.1) are u Mk S 5 and s*. 

iiip 
A complete set of equations is obtained by adding 

equation (9.6). Attention is called to the remarkable simplicity symmetry and generality of 
the field equations (10.1) in spite of the physical complexity of the system. 

11. LAGRANGIAN EQUATIONS 

We may represent the variables as 

uj 
= uj (q,, xR' t) , Mk = Mk j j(qit xi' t) 3 

S. 
J 
= Sj(qi' xR' t) , sp = 50(Pi' xI1' t) > (11.1) 

s* = s*(q;, xR, t) , 

where q 
i 
and q; are unknown generalized coordinates. BY varying ql' and again neglecting the 

inertia forces for simplicity, the principle of virtual dissipation (9.1) yields directly the 
Lagrangian equations 

where 

aD ap +Ri+-=Q , aqi hi i 
(11.2) 

Ri = 1 RP 2 da , D=/DdC, 
a i 

a& 
n T 

Qi=[(fj$-fC+-,k-$n -eznldA. 
i ij ij 

(11.3) 

(11.4) 

The mixed mechanical thermodynamic driving forces Q, represent the effect of the environment. 

The vector fi is the force per unit initial area at the boundary A of fi and n 
j 

is the unit nor- 

ma1 at the boundary. 

Note that 6M: and 6Si due to 6qi do not satisfy the condition that the normal components van- 

ish at the boundary. As shown elsewhere [14, 151 taking this into account yields the terms 

containing Mk and 
j 

S 
j 

in expression (11.4) of Q,. They represent the effect of the environment 

at the boundary of the open diabatic medium. Equations (11.2) are the same in number as the 
variables q 

i' 
Additional equations for q; are obtained by writing relation (9.6) at a suffi- 

cient number of points in the domain G. 

The Lagrangian equations (11.2) provide the foundation of a large variety of finite element 
methods or ZocaZ interpolation methods by using as generalized coordinates values of the field 
as discrete points with expressions (11.1) used as interpolation formulas. 
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12. EVOLUTION OF A DEFORMABLE OPEN CELL: VISCOELASTICITY, PLASTICITY AND HEREDITl 

The case of a single open cell undergoing an homogeneous deformation with matter and heat in- 
jection in the presence of chemical reactions is expressed by combining equations (5.9) and 
(9.11). The result may be written in Lagrangian form as 

AL= &+R =0, 
aqi Qi ’ ac, P 

(12.1) 

where qi denotes the variables E 
!Jv 

Mk and Sand Q, the corresponding force variables T nv 'ke* 

If the cell remains sufficiently close to an equilibrium we may write 

UP 
TB* = ; R i = 1 Bup 

P P 
iu ip = 2uch * (12.2) 

where B are functions of qi. In this case equations (12.1) become 
UP 

(12.3) 

These equations are analogous to 'those obtained earlier for nonlinear viscoelasticity [5, 161 
where sp play the role of internal coordinates which embody heredity properties. 

The viscoelastic heredity may be due to 
general theory has been developed along 
earlier results obtained in 1954-55 for 
sed as 

a large category of internal variables and a completely 
this line for the nonlinear case [5]. They generalize 
linear viscoelasticity 16, 71. The latter are expres- 

Tfj = ZPV ij Euv ' 
z’“v = 
ij I 

where r 
ij 

and E 
ij 

are stress and strain 

D;;' p + Du" + pD'uV 
p+rs ij ij ' 

(12.4) 

components p = -& (the time derivative) or p = iw (W = 

circular frequency), rs > 0 and the coefficients are nonnegative matrices. 

Plasticity properties may be expressed in a similar way [5] by introducing internal dislocation 
motion qs 

ij 
as internal coordinates with 

Ti* = f RS 4’ 
ij ij 

(12.5) 

representing the rate of dissipation. The indices correspond to various locations and orien- 

tations. The principle of virtual-dissipation yields the additional equations 

aV+ 
aqyj G = O (12.6) 

for the internal plastic variables. We note that Ryj is the tensor equivalent of the affinity 
R. 
P 

As pointed out [14] coupled diffusion and crystalization leading to creep deformation, may be 
treated similarly by using internal coordinates to represent the microthermodynamics of the de- 
formable solid. 

13. VISCOUS FLUID MIXTURES WITH THERMOMOLECUIAR DIFFUSION 

The principle of virtual dissipation has been applied to viscous compressible heat 
fluids for the case of a material description [5] and a Eulerian description [17]. 
sis has recently been 
In this case the rate 

conducting 
The analy- 

extended to mixtures with viscosity and thermomolecular diffusion [15]. 
of dissipation is 

TH* = 2D 
V 

where 

+ 2D, , (13.1) 

ARkrRrk + XRkv& vk 
1 ij ij 

is the dissipation function due to the viscosity. In this expression 

av: 

vij 
rk=6 k 

ij vij ' 
vt = Mk/mk . 

(13.2) 

03.3) 
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The local mass of each substance per unit volume is mk and v: is its velocity. 

The dissipation function due to thermomolecular diffusion is 

37 

(13.4) 

where k is the thermal conductivity of the mixture. 

The coefficients in II, and UT are functions of the local state, and it has been shown how those 

of VT must be chosen in order to satisfy invariance under translation [15]. 

Application of the principle of virtual dissipation including the inertia forces yields the 
field equations , 

(13.5) 

k 
to which we must add equation (13.1). The unknowns are Mi Si and s*. The acceleration of 

k 
each substance is ai expressed in terms of the velocity field vi. The body force such as gra- 

vity is included in (pk. The viscous stresses are defined as 

k avV 

'ij =- k 
aVij 

(13.6) 

pureZy in terms of the dissipation whiZe the partial pressures represented in ‘pk are defined 
thermodynamica 2 Lg. 

Again the simplicity and symmetry of the field equations stands in contrast to the complexity 
of the system. The corresponding Lagrangian equations have also been derived directly from 
the variational principle [15]. 

14. GENERAL APPLICABILITY 

The variational-Lagrangian procedure here described is applicable to a large category of prob- 
lems. A few of these are mentioned here. 

Linear Thermodynamics 

The method was originally developed in the linear context in 1954-55 [6, 71. The Lagrangian 
equations in this case are 

(14.1) 

where T (the kinetic energy) and D are quadratic forms in q; while P is a quadratic form in qi. 

The coefficient of these forms are constants. The theory has been applied to solids under in- 
itial stress [4] and extended more recently to include thennomolecular diffusion and chemical 
reactions [18]. 

Piezoelectric Crystals 

Applications to piezoelectric crystals [8, 91 make use of the potential (4.1) by including the 
electric terms. 

Porous Solids 

An extremely general theory of porous solids, linear [19] and nonlinear [lo, 201 has been de- 
veloped on the basis of nonequilibrium thermodynamics. 

Geothermal Systems and Aquifers 

The porous solid theory leads to a variational analysis of porous geothermal systems 1211 in- 
cluding two-phase liquid vapor transition as well as nonequilibrium adsorption. The treatment 
of aquifers constitutes a particular case. 
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New Heat Transfer 

A new approach to 

3, 

aqi 

M. A. Blot 

heat transfer based on the equation 

(14.2) 

was presented in a monograph 1221. Equation (14.2) was shown to be a consequence of the prin- 
ciple of virtual dissipation 151. It avoids the use of heat transfer coefficients by direct 
systems analysis. Its superior accuracy has been well illustrated 122-301 and its invariant 
property has been used to derive a self-similar formulation of heat conduction [31]. 

Rock Mechanics, Geophysical and Geological Applications 

The thermodynamics of porous solids leads to a new rock mechanics. In addition the Lagrangian 
approach to viscous solids provides a unified foundation in the theory of salt dome formation 
and geological folding. In particular it was shown that dissipative folding of layered struc- 
tures result from instabilities around steady state solutions of the nonlinear Lagrangian equa- 
tion [5] 

aD -= 0 

a4i 
(14.3) 

which expresses minimum dissipation. 

Unified Thermodynamics of Stability 

The Lagrangian equations (14.1) of linear thermodynamics provide a completely general approach 
to the stability theory of elastic thermoelastic and viscoelastic continua in equilibrium un- 
der initial stress [4, 32, 331. This type of instability is non-oscittatory and is not a bi- 
furcation. It must be distinguished from bifurcation instability in the vicinity of a sta- 
tionary flow as mentioned above in connection with the nonlinear equation (14.3) and exempli- 
fied by folding of stratified viscous solids in compression [5] along the layers. 

Biological Applications 

The variational treatment of deformable solids with simultaneous diffusion and chemical reac- 
tions [3, 141 provides a powerful tool in the analysis of coupled biomechanical systems. Of 
particular interest is a new systematic approach to active transport in biological membranes 
simplifying and generalizing existing treatments [34]. The case of active transport is a good 
illustration of the fact that the variational approach is essential and not just a formal ac- 
cessory of the analysis. 

Because of the scope and wide generality of the subject the foregoing account is necessarily 
incomplete. It is restricted to essential concepts and highlights along with some typical re- 
sults without the required elaboration for full understanding. The latter may not be acquired 
without a detailed acquaintance with the relevant publications. 
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