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The thermodynamic principle of virtual dissipation is given a formulation with 
variations of the field components freed from any constraints. Application of 
the principle and the introduction of a new state variable called heat content 
leads to the integro-differential field equations of thermorheology. Rigorous 
Lagrangian equations are also obtained which avoid the use of the entropy 
produced as an auxiliary variable while taking into account the heat generated. 
Quasi-isothermal and quasi-adiabatic evolutions are considered. Attention is 
called to the completeness of the generalized coordinate description and to 
implications in finite-element and bifurcation analysis based on the Lagrangian 
equations. 

INTRODUCTION 

In a previous work [6] a thermodynamic principle of virtual dissipation was derived and 
was used to obtain the field differential equations, constitutive equations, and Lagrangian 
equations of finite thermorheology. Our purpose here is twofold. First, to express the 
variational principle in a form valid for completely free variations in a domain which 
includes the boundary. Second, to introduce a new state variable, called the heat content, 
which eliminates the cumbersome need of introducing the entropy produced as an 
auxiliary variable for a rigorous description of the state of the system. 

After introductory sections recalling a nontensorial description of finite strain, and 
an evaluation of the basic thermodynamic functions of solids, the principle of virtual 

dissipation is formulated in two forms, called unmodified and modified. It is pointed 
that they do not imply the validity of the Onsager relations. The principle is interpreted 
physically in terms of availability. Its application using the new state variable leads to 
field equations that are now integro-differential. Rigorous Lagrangian equations are also 
derived with complete generality. The new formulation leads to drastic simplifications in 
two important practical cases of evolution which are quasi-isothermal or quasi-adiabatic. 
The new concepts also clarify the classical theory of linear thermoelasticity. The theory 
which is first presented in the context of finite thermoelasticity is also applied to a solid 
with rate-dependent stresses. This includes non-Newtonian fluids. Two kinds of entropy 

productions are brought out, with or without heat generation. This yields Lagrangian 
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equations that take into account the heat generation. They are nonlinear in the rate 
variables even in the case where the local irreversible thermodynamics is linear. 

It is pointed out that the physical descriptions by generalized coordinates is physically 
complete and rigorous. They should not be confused with “trial functions. “Also, the 

Lagrangian formulation provides implicitly finite-element methods as well as a new type 

of bifurcation analysis where the generalized coordinates represent finite departures from 

a given evolution. 

THE NONTENSORIAL DEFINITION OF 

FINITE STRAIN AND STRESS 

We shall first recall a treatment of finite strain used extensively by the author since 1934 

(see, for example, [ 1] and [?I) and based on virtual work as distinguished from prevailing 
trends. The treatment includes the tensor definition as a particular case. The procedure 
is not only simpler but also more general and easily applicable to media with anisotropy. 
It is ideally suited for thermodynamics. The power and importance of virtual-work 
methods in continuum mechanics has also been emphasized by Washizu [3]. 

Consider first a homogeneous deformation. The initial coordinates xi of the material 
points become 

Xi = (6 ij + aij)Xj 

where 6ii is the unit matrix and aij are nine coefficients corresponding to nine inde- 
pendent degrees of freedom. One group is represented by three functions of air corres- 
ponding to a solid rotation. The other group of six functions of aij represents the strain, 
and these are denoted by eij. The notation ij does not imply that these quantities represent 
a tensor; they constitute only six independent quantities chosen as strain components. 
A large variety of choice is possible, subject to the condition that these six components 
are invariant under a rotation. For example, consider rotated axes xi for which the 
transformation (I) becomes 

Xi = (6ij + aij)Xjl 

in such a way that 

In this case we define the strain components as [ 1 ] 

eij = fji = a; = ajli (3) 

Relative to the axes xf the principal directions of strain remain invariant in the trans- 
formation (2). We may consider this case to be obtained by considering a unit cube 
initially oriented along the axes xi. The cube is rotated rigidly together with the axes 
xi, after which the symmetric transformation (2) is applied. The combined rotation and 
deformation is chosen to be equivalent to the general affine transformation (1). 
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In another choice the rotated axes xf are such that three of the displacements gradients 
afj are put equal to zero, while the six remaining ones represent the strain eij. This will 
be the case, for example, if the direction xi is attached to the material while the material 

initially in the xix; plane remains in it. This method is particularly useful for anisotropic 
materials because the formulation of stress-strain properties may be tailored to the physics 
of the material and considerably simplified. It is ideally suited for fiber or laminated 

composites. 

In this method we must, of course, be able to evaluate the six strain components 
eij(aek) as functions of the nine parameters aij. It was shown that this can easily be done 
to any order to approximation by a systematic procedure [ 1, 21. In practice, for a vast 

category of problems the second-order approximation is satisfactory. We may also, 
of course, use Green’s tensor 

eij = +(aij + aji + akiakj) (4) 

as a definition of strain. Although it is expressed directly as a function of aij. in practice 
it leads to difficulties because it is nonlinearly related to the extension ratios, thereby 
introducing spurious and unnecessary nonlinear terms in the physical description. Also. 
the nonlinearities due to the geometry of rotation cannot be clearly separated from those 
due to the physical properties, which is particularly cumbersome for initially stressed 
media. 

There are six force components Tij associated with eij, and these represent the 
finite stress. They are defined as follows. We consider an initial cubic element of the 
material of unit size. After deformation defined by the strain components Eij we impose 
an al-bitrary virtual deformation heir. The virtual work of the forces acting on the faces 
of the deformed element is written as 

6 TV= Tij SEij (5) 

The notation here must be understood to mean a summation extended to the six inde- 

pendent components Eij. Relation (5) is used to define the six stress components Tij. 
When etj = ejt is a symmetric tensor, in order to conform to usual definitions of 7ij we 

simply count twice the terms in Tij &etj for which eij = ejt. The stress 7ij = Tji is then 

also a symmetric tensor. This definition is completely general and is valid whatever- the 
choice of definition of eij. The quantity 6 Avis a physical invariant. However, the factors 
Tij and 6eij are not necessarily tensors. For a nonhomogeneous deformation the initial 
coordinates Xi become Xi = xi + ut, where the displacements ui of material points are 
functions Of Xi and the time t. This defines a local homogeneous transformation 

dxi = (6 tj + aij) dxj 

where 

au; 
aij = ~- 

axj 
(7) 
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are the displacement gradients. With this value of aij the local strain, stress, and rotation 
are defined as for the homogeneous deformation (1). 

The virtual work (5) may be written as 

where 

(9) 

is the Piola tensor. Because of the geometric significance of Gatj, the nine components 
Ttj are the forces along Xi acting on the faces of a rotated and deformed element which 

is initially a unit cube oriented along the same fixed axes xi. Only six of the components 
Ttj are independent since they must satisfy three equations of equilibrium of moments 
obtained by canceling the virtual work of Tij for a rigid rotation of the deformed material. 
We proceed as follows. Write the variations 6Xi of the transformed coordinates as 

Ski = Xj Saij (10) 

In terms of the final coordinates xi, we may write this in the form 

Ski = Xj S5ij (11) 

where Gatj are suitable coefficients. It is convenient to write the transformation (1) as 

.%j = Cjkxk (12) 

where cij = 6tj f arj. Substitution of this value into (1 1) yields 

6.%i= Cjkxk saij (13) 

Comparing this results with (I 0), we derive 

6aik = cjk 6aij (14) 

With this value of 6aij the virtual work (8) becomes 

6 ‘W= Tikcjk Gaij (15) 

A virtual rigid rotation after deformation is represented by 

SEij = 0 fori=j 

GZij =- Siji fori#j 
(16) 
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Equilibrium requires the virtual work (15) to vanish for this case. This implies that 

TikCjk = Jkcik (17) 

These three relations between the nine components Tij are required due to equilibrium 
of moments. 

An interesting formula is also obtained for the stress referred to unit areas after 
deformation along the fixed directions Xi. The virtual work with these stresses is expressed 

by 

where J is the Jacobian of the transformation (I) and represents the volume of the 
deformed initial unit cube. Equating the two values (15) and (I 8) we derive 

1 
Uij = Uji=-TikCjk 

J 
(19) 

The symmetry of otj is due to the condition (17) of equilibrium of moments. Finally, 
with the value (9) of Tik we obtain 

a formula which is valid for any choice of definition of eMV and rPV including nontensorial 
ones. As pointed out, we note that the repeated indices /.LZJ in the formula (30) indicate 
a summation with respect to all six independent strain components ePV. 

THERMODYNAMIC FUNCTIONS OF 

FINITE THERMOELASTICITY 

The equations of state are the relations between the stress Tij, the strain etj, and the tem- 
perature T, expressed as 

Tij = Tij (~a ) T) (21) 

where epk denotes all six components of the strain and is assumed to be known from 

experiment. 
The energy $2 and the entropy 8 per unit initial volume are state variable functions 

of eij and T. They obey the differential relation 

d 5%‘~ rij deij + T d@ (22) 

The arbitrary constants in the values of % and @are chosen such that @ = c!f’= 0 in the 
initial undeformed state etj = 0 at the temperature T,. The entropy clp may be evaluated 
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when we know the equations of state (21) and one of the heat-capacity coefficients 
without any additional calorimetric measurement. This important result is obtained by 

extending to solids the classical Maxwell procedure. 
We write the exact differentials 

d( Q - TV) = qj deij - ~ dT (23) 

d( ‘%- TcY- 7ij~ij) = -Eij dTij - tidT (24) 

which imply 

The subscripts .C and 7 indicate that Eij and ~j are kept constant, respectively, in the 
differentiation. We now write the entropy differentials 

dcY= 

By definition of fl the quantities 

(36) 

(27) 

are the heat capacities per unit initial volume at constant strain and constant stress, 

respectively. They may be measured as functions of Eij and T or of Tii and T. 
Substitution of the values (15) into (36) and (27) yields 

C 
dfij + T dT 

Since these are exact differentials. we derive 

(29) 

(30) 

(31) 

Hence, thermodynamics along with the equations of state limit the choice of possible 
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values for C, and c, as functions of eij and T or of rtj and T. There is also a relation 
between these two heat capacities. It is derived by substituting into (30) the differential 

This yields 

By comparing this expression with (29) we find 

(32) 

(33) 

(34) 

Thus when we know the equations of state (21) we may obtain c, from c,, which is much 
easier to measure. 

The differential of the energy is now derived from (22) by substituting into this 
value one of the differentials (29) or (30) of ti. For example, in terms of eij and T we 
write 

(35) 

By integrating (29) and (35) along any suitable path, we obtain the values 

4~ 4(eij, T) cY= @(etj 3 T) (36) 

as functions of eij and T. 
The total energy and entropy of the medium occupying the initial domain R in the 

Xi space are 

u= s 4dR S= cYdR (37) 
12 I D_ 

The foregoing results concern thermostatic properties for reversible slow deformations. 
For irreversible transformations with thermal diffusion we consider the heat flux I$, across 
a dqforming material area which in the initial state is equal to unity and normal to Xi [2]. 

This heat flux as shown below is a contravariant vector. The total heat flux across a 
deformed area represented by the surface A in the space of the initial state is 

. 
J hint dA 

A 
(38) 
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where ni is the unit normal to A. The dot denotes a time derivative. The time integral 
Hi of fii with zero initial value will be called the heat fluence vector (previously designated 
as heat displacement). The time derivative of the entropy is 

We may write 

(39) 

(40) 

By integrating this expression in a domain s1 of the initial space, assuming no heat flux 
across the boundary A, we obtain 

s* = s &da=- s ki aT 
- -dR 

n a T2 axi 
(41) 

Obviously this is the rate of entropy produced in the solid. Use of the symbol !$* instead 
of 2 is to indicate that it represents an entropy produced. Since this is true for an arbitrary 
domain, the rate of entropy produced per unit initial volume is [2] 

iI. aT 
p--l- 

T2 axi 
(42) 

This generalizes for a deformable solid the formally similar expression derived by Meixner 
for a rigid medium [4]. 

The law of thermal diffusion is expressed as 

hi = - Kij ; 
aT 

I 

aX_ = -AijiIj 

1 

where KIi(eek, T) and Aii(epkT) are functions of the strain and temperature. They are, 
respectively, the thermal conduction and the resistivity tensor generalized to the contra- 

variant heat flux. With relations (43), the rate of entropy production (42) becomes 

(44) 

These relations are completely general and show that Kii is a contravariant tensor while 
its inverse Aij is covariant. 

In the absence of a magnetic field or Coriolis forces of very high intensity, Onsager’s 



LAGRANGIAN THERMODYNAMICS OF THERMORHEOLOGY 301 

reciprocity relations [5] are expressed by the symmetry properties 

Krj = Kji Aij = Aji (45) 

Note that the validity of the present theory does not require that these reciprocity 
relations be veriped, since expression (44) involves only the symmetric part of Arj. 

For an isotropic material with reciprocity relations (45), we must choose a symmetric 
definition of erj given by (3) or (4). The energy 4% and entropycY then become functions 
of the three invariants of Erj and the temperature. The symmetric resistivity (45) for this 
case is 

where Fr, F2, F, are functions of the invariants and the temperature, and k is the thermal 
conductivity at zero strain. This equation is invariant under rotation of axes Xi or xi. 

Principal directions coincide, and for axes oriented along these directions it is immediately 
evident that the relation satisfies isotropy and is the most general. In practice, only 
linear terms with F, and F, functions of the temperature only will generally be adequate. 

GENERALIZED FORM OF THE PRINCIPLE OF 
VIRTUAL DISSIPATION 

Consider an irreversible evolution of a thermoelastic medium occupying the initial domain 
!2. The evolution of the system is described by the field ui of material point displace- 
ments and by the temperature field T as functions of time. We freeze the system at any 
particular instant and apply variations 6ui and 6 Hr. The variation 6ur isarbitrary. However, 
we impose upon the variation 6Hr the condition that its normal component vanishes at 
the boundary A of R. In other words there is no virtual heat transfer across the boundary. 
Note that this condition is only virtual in the frozen state and does not imply that in the 
actual evolution there is no heat flow across the boundary. 

Let us first assume that there are no inertia forces. Under these conditions we may 
write 

6U=6W (47) 

where 6U is the variation of the total energy (37) of the medium and FW is the virtual 
work of the external forces acting on the medium. Also, from (40), replacing kr by 
6Hi and &byGcY’we obtain 

6s=6s* (48) 

where 6s is the variation of the total entropy (37) while 6S* is the variation of the 
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entropy produced, Equation (41) shows that 

6s* = s 6s” dR 
$2 

where 

is the virtual entropy produced per unit initial volume. 
It follows from (47) and (48) that we may write the variational principle 

6V + T,SS* = 6W 

(49) 

(50) 

where T, is an arbitrary constant having the dimension of a temperature and 

V=U-T,S (52) 

is the thermoelastic potential of the whole medium. We may also write 

v= s YdR (53) 
R 

where 

r=@-T& (54) 

is the thermoelastic potential per unit initial volume. From the value (33) of d @we also 
derive the important differential relation 

d Y= rijdeij + 0 dfl (55) 

where 

e=T-T, (56) 

Until now we have assumed &Hi to be subject to the constraint of no virtual heat 
transfer at the boundary. For the sake of generality it is important to remove this constraint. 
This is accomplished as follows. We write relations (39) and (55) in variational form as 

6 V= TijSEij + 66crP (57) 
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Hence 

(59) 

Consider now variations &Hi which are arbitrary in the domain R except in a thin layer 
R’ near the boundary A where the normal component drops rapidly to zero as we approach 
this boundary. We denote by SVc the variation which obeys this constraint and by SY 
the variation which is free. The integral of SVc over the volume R may be split into two 
terms by writing 

(60) 

In the second integral the term containing (e/T) (a/aXi)6Hi becomes infinite as the 
thickness of the layer R’ tends to zero. However, the infinity may be removed by inte- 
gration by parts. In the limit where the layer a’ vanishes we obtain 

(61) 

where 6Hini is the normal component of 6Hi at the boundary. On the right-hand side of 
this equation the variations SHi are now completely free in LI as well as at the boundary 
A. We put 

GWTH = - s 9 

T sHini dA (62) 

which may be considered as the virtual work of the thermal forces at the boundary. As 

a consequence we may write the variational principle (5 1) as 

Sv + T,,SS* = SW + 6WrH (63) 

where the variations 6Ui and &Hi are now complete& free and arbitrary in a domain 

including the boundary. 

The variational principle may be extended to dynamical systems. Following 
d’Alembert’s principle, the virtual work of the external forces may include the work of 
the reversed inertia forces which play the same role as body forces. These inertial body 

forces per unit initial volume are piit, where iii is the acceleration and p is the initial 
density of the material elements. If we denote by 
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the virtual work of the inertia forces, we can replace 6W by 6W -&WIN in Eq. (63). 
We obtain 

SWIN + 6V + T,SS* = 6W + GWTH (65) 

This constitutes a generalized form of the unmodified principle of virtual dissipation 
announced earlier for irreversible thermodynamics [6]. 

If the external forces are partly derived from a mechanical potential G such as 
gravity, we write 

G= s p S(%i) dR 
cl 

(66) 

where 2J((xi) is the body force potential per unit mass at the displaced point Xi = xi + ui 
and p is the initial density at xi. We introduce a mixed collective potential [6] 

W=V+G (67) 

and write the variational principle (65) as 

swIN + S P+ T&S* = 6WM + GWTH (68) 

where 6WM is now the virtual work of the remaining external mechanical forces, namely 
the forces applied at the boundary. In which case, we may write 

swM = s fiFui dA (69) 
A 

where ft is the force per unit initial area at the boundary A. 
The term T,6S* represents a virtual dissipation. While this is not essential, we shall 

assume the reciprocity relations (45) to be satisfied and introduce a dissipation function 

With this definition, the values (49) and (50) yield 

T,SS* = 
s 

T&* da 
!2 

(70) 

(71) 

with 

(72) 
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The principle of virtual dissipation (68) may now be written 

SWrN+Sg+T 0 Ss” da = SWM + SWTH (73) 

where T,Ss* is expressed by (72) in terms of the dissipation function (70). 

Another form of the variational principle is also obtained by introducing a different 
dissipation function, defined as 

gin zz ;Ts* ZY ;TAij$Sj 

where Si = II/T is the entropy flux. In this case we may write 

(74) 

TSs” = 
aLB~ 
VSSi 

SHi 

&Si ssi=F- 

Also 

py= $+ s* (76) 
I 

(75) 

where Si is the entropy fluence vector defined as the time integral of St and s* is the total 
entropy produced. We then vary arbitrarily Sui and SSI. It can easily be shown [6] that 
the variational principle (73) becomes 

SW’N + s.9+ I I TSs” = SWM + SWTH 
62 

(77) 

where TSs* is given by (75) while 

SWTH = - I 9 SSinIdA (78) 
A 

The term 6, Bis a variation obtained by putting S&‘= -(a/aXt)SSi. We shall call (77) 
the modified form of the principle of virtual dissipation. We also refer to 3 and gt,,, 
respectively, as the relative and intrinsic dissipation functions. They obey the relation 

(79) 

The reason for this appellation will be discussed in the next section along with the physical 
interpretation of the virtual dissipation TOSS*. 

If the Onsager reciprocity relations are not satisfied, the virtual dissipations T,,Ss* 
and TSs* contain an antisymmetric term analogous to a gyrostatic force in mechanics 
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where the virtual work principle retains its validity &rough 
physical work. This validity extends to the virtual dissipation. 

the force performs IIO 

PHYSICAL SIGNIFICANCE OF THE THERMOELASTIC POTENTIAL 

The foregoing derivation is based on the introduction of an arbitrary chosen constant 
T,, which has the dimension of a temperature. A fundamental physical interpretation 
of the thermoelastic potential is obtained by adjoining to the system n a large isothermal 
thermal well TW at the temperature T,. The system s2 + TW constitutesa hypersystem [6]. 

We start from a ground state‘of this hypersystem where cl is stress free and at the 
temperature T,. The hypersystem is then subjected to an arbitrary reversible transforma- 
tion where work is performed on it by external forces without any exchange of heat 
from outside this system. However, heat is provided to fi by transfer from the thermal 
well by the use of reversible heat pumps. Since the transformation is reversible. the 

total increase of entropy of the hypersystem is zero. Therefore, if S is the entropy of 
!2 the entropy of the thermal well is -S and its energy is -T,S. With U denoting the 
energy of R, the total energy of the hypersystem is 

V=U-T,S (80) 

This provides the physical interpretation of the thermoelastic potential. The same inter- 
pretation is also obtained by considering the differential (55) of K where the term riideii 
is the work of the stresses on an element, while 8dflrepresents the work required by 

a reversible heat pump extracting heat from the thermal well and injecting into the 
element a quantity of heat Td&‘at. the temperature T. As indicated earlier [7]. the heat 

pump may operate through a Carnot cycle, or without any cycling, by pumping pure 
heat, using a blackbody radiation pump. 

Further physical interpretation of the variational principle (68) is obtained by 
replacing the variations by time derivatives. We may write this in the form 

,~+.~P-T,S*+W~+W~” (81) 

where 

y=’ 
i 2 62 

puitii dR 

is the kinetic energy and 

(82) 

WJM= 
s 

flit1 dA WTH=_ 

A i 
’ kini dA 

AT 
(83) 

The quantity 9 + 5 may be considered as a generalized “availability” representing 
the useful energy available in the presence of a thermal well at the temperature T, which 
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may be identified with an environment. On the right-hand side, WIN and WTH represent 
the influx of availability through the work of external forces and heat influx from the 
environment. For an irreversible transformation the term -T,S* is always negative since 
S* is the rate of entropy production. It represents a loss of availability and is a minimum 
for a reversible transformation. 

This also provides an interpretation of the two dissipation functions (70) and (74) 
considered above. The intrinsic dissipation rate 2Btr, represents the loss of availability 
in’ the presence of a thermal well whose temperature is equal to the local temperature T. 
It is a total loss of useful energy. However, in the presence of a thermal well at a lower 
temperature T, the relative rate of dissipation 29 = 2(T,/T)CJh represents only a partial 
loss of useful energy. This distinction between intrinsic and relative dissipation was 
discussed earlier in a more general context [6]. 

Use of the potential V as the key potential for irreversible thermodynamics was 
introduced and developed by the author in a series of publication originating in 1954. 
It was referred to at the time as a generalized free energy because for an isothermal 
transformation it coincides with the Hel#holtz free energy. The term “exergy” was 
later used by others to designate this potential. 

DERIVATION OF FIELD EQUATIONS FROM THE 

VARIATIONAL PRINCIPLES 

Differential field equations are obtained directly ‘from the unmodified principle of 

virtual dissipation (68) by varying arbitrarily the fields Ui and Hi inside the domain 
!L We obtain the field equations 

g + *ijtij=O 
I 

(85) 

Equations (84) express momentum balance, while Eqs. (8.5) govern heat conduction. 
Since fir is not a state variable, a complete description requires the auxiliary equations 
(38) namely 

Tti+z=O 

I 
(86) 

A scalar formulation is obtained by solving Eqs. (85) for l$t and substituting these values 
into (86). We obtain 

/m 

(87) 
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This involves second derivatives and may not be as convenient for numerical work as the 
vectorial form (85) which satisfies flow continuity and involves only first spatial derivatives. 

We may also use the modified form (77) of the variational principle using arbitrary 
variations of ui and Si. This leads to field equations for these variables. Since Si is not 
a state variable, an accurate description requires the evaluation of s* which satisfies the 

auxiliary equation (74) namely 

s* = Aij$Sj (88) 

These equations also lead to the form (85) with fit by substituting Si = fit/T. However, 
use of the variables Si has the advantage that we may often neglect the auxiliary equation 
(88) while preserving flow continuity and the first spatial derivatives. In the next section 
we shall introduce new state variables that provide a rigorous vectorial formulation 
preserving flow continuity without the need for auxiliary equations. 

THE HEAT CONTENT AS A NEW STATE VARIABLE 

As we have seen, use of the vectors Hi or St as field variables, while preserving flow 
continuity, does not provide a complete description of the state of the system without 

the use of an additional unknown obeying either (86) or (87) as auxiliary equations. In 
order to avoid this inconvenience we will introduce a new state variable, which we shall 
call the heat content. It is a generalization of a similar concept already used earlier in 
the more restricted context of pure heat transfer [8]. 

This may be accomplished in two ways. Starting from a given uniform initial tem- 
perature TO the energy of an element is 

@'=*(Eij,e) (89) 

where 0 = T - TO. We first consider an adiabatic transformation. The temperature 
increase B* for such a transformation is a function only of the strain eij_ The corres- 
ponding energy 

@(Eij, fl*) =%*(Eij) (90) 

is also a function only of eij. The energy (89) may then be written 

4Y(eij,O)=@*(eij)+h* (91) 

where h* is the heat to be added under constant strain in order to reach a temperature 
T=T,+O.Hence 

h*(eij, 0) = @(eij, 0) - @*(eij) (92) 

is a state variable function of Eij and 0. We shall call h* the heat content of the first kind. 

The same reasoning applies when we start with an isothermal transformation at 
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a uniform constant temperature T,, for which the energy 4 B, the entropy cYB, and the 
thermoelastic potential TB are functions only of eii. We write 

he = @(eti 9 0) - %!‘(Eij) 

(93) 
hB= h’ +cY’T,=%‘(~~~,B)-Y~ 

where h’ is the heat to be added under constant strain in order to reach the temperature 
TO + 0. We call hB the heat conrent of the second kind. It is a state variable. 

The same formalism may be used for both cases denoting by hc the heat content, 
where C is either A or B. With this notation we may write (92) and (93) in the same 
form as 

hc = @(etj, 0) -YC(Eij) (94) 

We denote by qi*(epk) and riiB(eek) the stress for the adiabatic and isothermal trans- 
formations, respectively. Again, they are functions only of the strain. Using the notation 
rti” where C is either A or B, we may write the differential 

de = rtiCdeii (95) 

Hence (94) yields 

de= qjCdeii + dhc (96) 

where eii and hc: are now state variables. The temperature is obtained by solving Eqs. 
(94) for 8. Note that the differential (96) corresponds to an incremental change in the 
vicinity of a state of deformation eti at the temperature T = TO + 0. We denote by 
rti the actual stress in this state. The energy differential may also be written as 

(97) 

where dh is the heat to be added to obtain the increments deii and dT. By equating the 
two values (96) and (97) we obtain 

dh = (rtjC - rii)deii + dhc (98) 

With time derivatives, this is written as 

~ = (7ijc - ‘rij);-ij + ~’ (99) 

We may also introduce three contravariant vector fields tic, Hi, and I?: defined per unit 
initial area in the deformed solid by 

($ - Tij)pij = - r$ 
1 

(100) 
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Equation (99) is then satisfied if we put 

Integrating hc with respect to time with zero initial values, we obtain 

(101) 

(102) 

(103) 

Since hc is a state variable, the vector HF along with ut determines the state of the 
system. Hence Hc is also a state variable. We shall call Hi’ the heat content flueme, 

fif the heat content flux, fii the total heat flux, and I$ the auxiliary heat flux. 

We may write Eq. (100) as 

ati: .+ -= h 
aXi 

h+ = (rij - $)pij (104) 

where l? behaves as a fictitious heat source per unit initial volume. 

Equation (104) does not define a unique field I$ in terms of I;‘. A possible choice 
is obtained by introducing a singular vector field gi(xy,xy+) which represents the flux due 
to a unit source at the point xv+. In other words, it satisfies the equation 

&i 
ax_ = WY, xQ+) 

L 

where 6(xQ, x;) is Dirac’s function. A field I$+ is then 

@+ = s gi(Xy , X(;)t;‘dCZ+ 
IL+ 

(105) 

(106) 

where integration is over the space .Q’ of initial coordinates x;. 

Note that fit+ as well as gi still possess a large amount of arbitrariness. They may 
be chosen, for example, to satisfy conditions of vanishing flow across certain portions 
of the deformed boundary in the space of initial coordinates. 

We now derive the field equations for ui and HF by applying the unmodified principle 
of virtual dissipation (68) and varying arbitrarily these two vector fields. From (102) we 

may write the variation 

sHiC =6Hi-_HH: (107) 

where 
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(108) 

as implied by (104) and (106). Since 6H: is determined by 6ui, we may choose 6Hi to 
vary arbitrarily instead of 6Hrc. With arbitrary variations &Hi and 6Ui inside the domain 
52, the variational principle (68) leads to the same field equations (84) and (85) as before, 
except that the total heat flux I$i is now replaced by 

Hi = s gi(X, 2 XQ+) (T~U - T~V’)&V dR’ + fi,” 
cz+ 

(109) 

Hence the field equations for ui and HF become integro-differential equations, where 
the local state variables are Eij and hc = -aHiC/axi. These variables completely determine 
the history of evolution of the system and the auxiliary equation (86) is not needed. 
The same result is also obtained by using the modified form of the variational principle. 

GENERALIZED LAGRANGIAN EQUATIONS 

In the past we have derived Lagrangian equations from the modified form (77) of the 
virtual dissipation principle using the entropy fluence vector Si as a field variable. A 
rigorous description of the system in this formulation required the introduction of the 
entropy produced, s*, as an additional variable, with an auxiliary equation. While this 
auxiliary variable could be neglected in first approximation, its elimination should provide 
a fundamental improvement. This can now be accomplished by using the heat content 
fluence Hf as a state variable which preserves the flux continuity. By this procedure 
the principle of virtual dissipation in its unmodified form (65) leads to rigorous Lagrangian 
equations of evolution which involve no approximation. 

We express the vector fields 

uj = uj(%, xY) HF = HF(qi, XQ) (110) 

as functions of the initial coordinates xi and a finite number of generalized coordinates 
qi, which are unknown functions of time to be determined. The functions uj and Hit may 
also contain the’time as an explicit variable if need be, but this variable is omitted here 
for simplicity. The local state variables eij and hc may be expressed here as functions of 
qi and xi, and the mixed collective potential -P(e) becomes a function of qi. We may 
write 

a9 
68= - &qi 

3% 
(111) 

with arbitrary variations 6qi. The variations of the fields (110) are 

auj 

C 

6Uj = - &qi 
aqi 

*Hjjd!!L&& 
3% 

(112) 
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From (102), (104), (106), (108), and (112) we also derive 

6Hj=4Pji6qi tij=LTji~i (113) 

s af 
zji (qk> XQ) = 

aHjC 
gj (XQ, XQ’) (~pv - 7pvc) )*v da’ + - 

CL+ hi ai& 
(114) 

This quantity is a function of the set of qi’s and the initial coordinates xy. The virtual 
work of the mechanical and thermal boundary force is 

6WM = Qi”6qi SWTH = QTH6qi (115) 

with corresponding generalized forces 

Qr = ~fj t dA 
L 

Q,‘” =-S,GqiIIj dA (116) 

Consider next the virtual relative dissipation of the whole system. According to (113) 

we may write 

ak. 
6Hj= -! Fqi 

aili 
(117) 

For simplicity we shall assume the validity of the reciprocity relations. However, as 
pointed out this is not required, since antisymmetric terms may be introduced in the 
virtual dissipation. 

In this case the virtual dissipation (71) becomes 

s a.9 ah 
T$S* = _ --‘sqidfl =!!? sqi 

R ailj aii a;li 

with a total relative dissipation function 

D= 
s 

gdS1 
n 

This dissipation function is a positive-definite quadratic form in qi: 

D = $bijqiqj 

where the coefficients bti are functions of the set of qi’s. 

(118) 

(119) 

(120) 
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Finally, using a classical procedure [8] we express the virtual work of the inertia 
forces as 

(121) 

where 

1 
_9- = - 

s 

1 

2 fi 
Plii~i da = - mijqiqj 

2 
(122) 

is the kinetic energy of the medium as a positive-definite quadratic form in pi with the 
coefficients mij functions of the qi’s. 

We now substitute the values (111), (115), (118), and (121) into the unmodified 
form (65) of the principle of virtual dissipation. Since 6qr is arbitrary, this yields the 
Lagrangian equations 

a.9- a~ as -+-=Qi 
atli 3% 

(123) /s; 

where Qi = QY + QT” . IS the generalized thermomechanical force exerted by the environ- 
ment. Through (1 IO), the qi'S are now state variables and the Lagrangian equations 
describe completely the evolution of the dynamical and thermodynamic system in 

a potential field G such as a gravity field. 
Note that, by integration with respect to time, equations (123) lead to a variational 

principle in Hamiltoniun form 

a(*F+9)+(&Qi) Sqj dt=O (124) 

THE CASE OF PURE HEAT TRANSFER 

If the work of deformation is negligible in comparison with the heat flow, we may put 
eij = 0. Hence the only state variable is 

Hi= Hc 
aHi 

h=hc=-z I 
(125) 

In this case the concept of heat content hc’ becomes identical with the same concept 
introduced earlier for pure heat transfer [8]. Since there is no deformation, the heat 
fluence vector Hi is now an ordinary Cartesian vector. putting r = G = 0, the Lagrangian 
equations (123) become 

av aD -+-=Qi 
hi 3% 

(126) 
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where Qt now reduces to the thermal force QrrH and V is given by 

s he 
v= v-dC2 V= - dh 

oT 
(127) 

In this particular case an alternative formulation is obtained where the factor l/T is 
eliminated from the integrands for Yand QT”. This is shown by expressing the principle 
of virtual dissipation (65) in terms of arbitrary variations &Hi. After integration by parts 
using the relation a(e/T)/axi = -(T,/T*)M/a x, and canceling the factor To/T2 in the 
integrand, we obtain 

(128) 

which implies that the integrand vanishes. Another integration by parts then yields 

which is the variational principle of heat 
Lagrangian equations (126) with a thermal 
generalized thermal force Q, expressed as 

(129) 

transfer derived earlier [8]. It leads to the 
potential V, a dissipation function D, and a 

s I h 
V= dS2 0 dh AijHiHi dC! Qi=- (130) 

s2 0 

Applications of the variational principle (129) and the corresponding Lagrangian equations 
were discussed extensively in a monograph [8]. In this context, attention should be 
called to special formulations such as that of associated fields which lead to the direct 
use of the scalar temperature field as the unknown instead of Hi and the treatment of 
boundary heat transfer to a moving fluid using the concept of trailing function. The latter 
eliminates the inconsistencies of standard methods and is well suited to the Lagrangian 
treatment. 

It should also be noted that in the present treatment the variational principle is used 
to derive the field equations of heat conduction and not the reverse, as is done by standard 
variational procedures. Also, the Lagrangian equations are obtained directly from a 
general thermodynamic variational principle without using the field differential equations. 

QUASI-ADIABATIC AND QUASI-ISOTHERMAL CASE 

There are two important practical cases leading to drast,ic simplification. One is where 
the temperature is nearly equal to its uniform initial value T,. In this case we choose 
the heat content h* as the state variable. Since qi - riiB is negligible we may put 
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h” = H: = 0. In this case the field Hi = HB becomes a state variable and may be expressed 
in terms of generalized coordinates Q. The Lagrangian equations are correspondingly 
simplified. This case was the object of an extensive discussion earlier [2]. 

The other case of practical importance is where the deformation is almost adiabatic. 
Again, we neglect rii - Frj* and Hi = HiA becomes a state variable with a similar simpli- 

fication of the Lagrangian equations. 

NEW INSIGHT IN LINEAR THERMOELASTICITY 

The linear theory with small strain eri = eii and small temperature increment 0 has become 
classical, Some new light is provided in this case by the present analysis. The linear 
equations of state are 

Tij = Cij” e,, - Pij Q (131) 

The energy and entropy differentials d @ and drYobtained from exact values (29) and 
(35) are integrated retaining only first- and second-order terms. We obtain 

4Y= ~C$'eije~~ + T,,s (132) 

where 

S = &jeij +L (134) I - 
7% i 7 

and c is a constant heat capacity per unit volume. We also derive the thermoelastic fW 

potential, 

1 ces 
V= ‘%!- To CYP= f Cij”eiieM,, +- - 

2 T, 
(135) 

It is interesting to note the disappearance of the linear terms in the value of -Y: This 
remains true even if we assume a linear dependence of c on the temperature. In addition, 
Vremains unaffected. We also note the dual role of the entropy, first as a linear state 
variable s and second as a nonlinear quantity @analogous to a potential with quadratic 
terms. 

We now introduce the heat content of the second kind, hB = -dHB/aXi, as a state 

variable. A comparison of Eqs. (93), (132), and (135) yields 

hB = - 
aHB 
-=T,s 
axi 

(136) 
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According to (99) we may also write 

il = (7ijB - .rij)lij + liB (137) 

Hence, to the first order we have 

h = hB Hi= HF (138) 

and in the linear approximation we may use h and Hi as state variables with 

aHi 
]I=-~ =T,s 

I 
(139) 

This justifies the procedure used in the linear theory. 
The foregoing analysis brings out and explains a particular feature of the linear 

theory regarding energy conservation, namely that the use of the linearized state variable 
h instead of hB does not yield a correct value of the energy valid to the second order. 
This may be verified by writing the time derivative @ of the energy (132) and substituting 
the approximate linearized value (139) of TOs. We obtain 

4 = ~ijB~ij + 1; (140) 

which is incorrect to the second order. However, repeating this evaluation using the 
exact value (136) of T,s yields 

4i = TijBi‘ij + LB (141) 

By introducing the value of hB derived from Eq. (137) this becomes 

~= .rijlij + 1; (142) 

which is the correct value of the power input. 

EXTENSION TO VISCOELASTICITY 

Consider the stress to be partially dependent on the rate of deformation Pij. We separate 
the stress into two terms, 

7.. = 7.v + T..E 
1J IJ II (143) 

where rij’(epy, T) is the elastic part for slow reversible deformations while riy(epv, E,+,,, T) 
is the rate dependent part. We may write the time derivative of the energy as 

atii @ = Qij - _ = TijE&j + T&J’ 
aXi 

(144) 
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We derive 

with 

1 
S”=- v* 

ki aT 

T 
7ij Eij- 

-_ 
T2 axi 

s,2 

T 

(145) 

(146) 

where S* is the rate of entropy production per unit initial volume and Si is the entropy 
flux. The rate of intrinsic dissipation is 

TS* = 7iyPij + TAijSiSj (147) 

The corresponding virtual dissipation is 

T~s” = 7iY~Eij + TAijSj6Si (148) 

Further physical clarification of the entropy produced is obtained by considering 
an adiabatic deformation producing a certain temperature rise. The differential of the 
energy in this case is 

d@= (Tiy + TiF)deij (149) 

If the same deformation and temperature rise are produced reversibly with an injection 
of heat dh, the differential of the energy is 

dQ= TiFdeij + dh (150) 

Hence 

dh = 7iy deij or (151) 

This intrinsic dissipation yields an entropy production S* = h/T and is obtained by a 
calorimetric measurement. It corresponds to the concept of uncompensated heat of 
Clausius. We note here that there are two types of entropy productions, represented by 
the two terms of Eq. (147). The first is due to the generation of heat, while the second 
represents a dissipation without heat production. 

In order to obtain field and Lagrangians equations, we proceed exactly as in the 
section on the derivation of field equations from the variational principles using the heat 
content fluence Hi’: as a state variable and an auxiliary field Hi’ satisfying equation 
(100). The only difference is that we must substitute the total stress Tij = Tiy + TijE. 
Hence the variation (107) and the heat flux (109) become 

6Hi= T6Si= (152) 
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Field equations are readily obtained by using the principle of virtual dissipation 
in its modified form (77) with arbitrary variations 6ui and &St inside the domain. In 
this procedure we must also put 

S!9=- i*Si 
i 

in the variation 6u.P’. We obtain the field equations 

g + TAijSj=O 
L 

(154) 

(155) 

(156) 

In the second set of equations we replace TSt by its value (153). Hence these field equations 
are integro-differential equations where the only unknown variables are the state variables 
ui and Hi’. Auxiliary equations such as (86) or (88) are not needed for cYor s*. 

Lagrangian equations using expressions (110) of the fields ui and HF in terms of 
generalized coordinates may be obtained directly from the unmodified principle of 
virtual dissipation (65). In this case we must evaluate the virtual relative dissipation 

(157) 

This may be expressed in terms of generalized coordinates by using expressions (110). 
We may write 

Sep” = 2 Sqi 6Hj = (.Yjy + 2’ji)hqi 
1 

where 

yjy(qk, qk, XP) = s &CxP3 x!i)Tp,V 
CL+ 

lij = <eYj~ +A? ji)& (158) 

(159) 

Because rPVv ’ IS rate-dependent, this expression is a function of qi. The virtual dissipation 
(157) may now be written as 

T,6S* =(Rv + RTH)Gqi + (1’50) 
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where 

R%o qk) = s TO v a%J 
ClT 

-6qi da 
-‘flu aqi (161) 

(162) 

are rate-dependent dissipative forces. The generalized thermal force (115) at the boundary 
now becomes 

Q'"=- 
1 s ’ (LZ’iv +Pii)nj dA 

AT 

With these values the J-agrangian equations are written as 

aD as 
- +R-V+R.TH+-+ 
aqi ’ 1 a& 

_ = Qi 

aQi 

(163) 

(164) 
4; 

For simplicity, we have assumed the reciprocity relations (44) to be valid, which 
implies a dissipation function. But the more general case is not excluded. It is interesting 
to note the physical significance of the new dissipative forces in the present case. The 
force RiV corresponds to the loss of availability due to viscous heat production, while 
RiTH corresponds to an additional loss of availability due to the fact that the heat produced 

’ is transferred by conduction. Finally, the term .Yit in (163) represents the loss of availa- 
bility of the frictional heat to the environment. 

The results are applicable to a large variety of constitutive properties including 
nonlinear creep and non-Newtonian fluids and take into account the frictional heat 

production. For a Newtonian fluid if we neglect the heat produced, the equations are of 
the same type as (123) with a single dissipation function D which embodies both the 
viscosity and the heat conduction [6]. 

As pointed out, we may write Lagrangian equations where qt represent deviations 
from a given evolution with Qt= 0. This corresponds to a nonlinearized bifurcation 
analysis with a time-dependent dissipation function. For the creeping motion of viscous 
incompressible fluids, the Lagrangian equations are reduced to 

aD 
-0 

a;li- 

Unstable solutions may be obtained as, for example, in the case of a nonhomogeneous 
layered viscous solid [6]. Note that Helmholtz’s theorem stating that the evolution 
tends to a stable steady state (see [9], p. 619) is not applicable to nonhomogeneous 
fluids. The thermal conduction tensor Ktj for a viscous fluid as a function of the defor- 
mation has been evaluated [6] using the invariance property of the dissipation. 
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COMPLETENESS OF THE GENERALIZED COORDINATE 

DESCRIPTION, IMPLICIT FINITE ELEMENTS, AND 

BIFURCATION ANALYSIS 

Fundamentally, the generalized coordinates are not simply “trial functions,“asmistakenly 
believed, but from the standpoint of physics provide an accurate and complete descrip- 
tion of the physical system. This can be seen by dividing the system into a network of 
cells, where the generalized coordinates are field components at the nodes. Values in the 
cells are obtained by polynomial interpolation. The cells are always finite in number, 
and their size may be assumed small enough to reach a “resolution threshold” [8] below 
which the macroscopic laws break down. Hence, from this standpoint the Lagrangian 
equations provide a rigorous formulation of the physical evolution. By the same token 
this viewpoint provides implicitly a large variety of finite-element methods with suitably 
chosen cells. We may use linear, or higher degree, interpolation. Quadratic interpolation 
similar to Simpson’s method should provide high accuracy without requiring small-size 
cells. 

A bifurcation analysis with generalized coordinates, representing a finite departure 

from a given time-dependent evolution, is also implicit using Lagrangian equations for 
the bifurcation coordinates qi as exemplified by Eq. (165). This procedure is completely 
general and constitutes a powerful tool for a stability analysis. It may also be used to test 
the accuracy of a given solution by evaluating the magnitude of possible departures. 
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