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Abstract. Equations of motion are obtained for a viscous fluid mixture including 
thermal and intermolecular diffusion as well as chemical reactions and radiation pressure. 
They are derived by applying the thermodynamic principle of virtual dissipation. The 
method also incorporates a new approach to the chemical thermodynamics of open systems 
which leads to new concepts and formulas for the heat of reaction and the affinity. They are 
simpler and more general than classical values. Instead of chemical potentials, new “con- 
vective potentials” are used which involve physical properties restricted to the system. They 
do not require extrapolations to absolute zero or the use of undetermined constants. No 
statistical theory is involved. A noncalorimetric evaluation of the heat of mixing is obtained 
from the concept of injection pressure of each substance in the mixture. Field equations are 
derived and a coupling between viscous stress gradients and diffusion is brought out. The 
convective potentials lead to a new evaluation of the thermodynamic functions of mixtures 
as well as a new generalized formulation of the Gibbs-Duhem theorem. Translational 
invariance of the dissipation is discussed and related to total momentum balance. La- 
grangian equations of motion with generalized collective coordinates are derived directly 
from the variational principle and should provide a powerful approach to problems of 
stellar dynamics with radiation pressure. 

1. Introduction. Equations of motion and the thermodynamic evolution of a viscous 
fluid mixture with thermal and intermolecular diffusion have been derived from the prin- 
ciple of virtual dissipation with chemical reactions. Our purpose here is to extend the 
derivation to a chemically reacting mixture and to include the effect of the radiation 
pressure at high temperature as well as a number of new and fundamental contributions. 

The basic thermodynamics using “convective potentials ” instead of chemical potentials 
which we have introduced for open mixtures is recalled in Sec. 2. Expressions are derived 
for the heat of mixing in terms of noncalorimetric measurements using the concept of 
“injection pressure.” A new approach to chemical thermodynamics is outlined in Sec. 3 and 
involves new concepts. In particular, an “intrinsic heat of reaction ” is defined which is 
more representative of the true chemical energy and leads to new evaluations of the heat of 
reaction, affinities, and chemical potentials, which are both simpler and more general than 
the classical results. 
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The principle of virtual dissipation is formulated in Sec. 4 for a reacting mixture with 
inertia forces, viscosity and the thermomolecular diffusion. A simplification is introduced 
by using a common acceleration for all components of the mixture defined by the barycen- 
tric velocity. This also provides further simplication by defining the viscous dissipation in 
terms of barycentric velocity gradients and viscosity coefficients of the mixture. 

With these results, application of the principle of virtual dissipation in Sec. 5 provides 
the field differential equations of motion and thermodynamic evolution of the mixture. The 
existence of a novel coupling term between diffusion and the viscous stress gradient is brought 
out. A simplified expression is obtained for the energy flux, and it is pointed out that in the 
presence of chemical reactions use of the barycentric velocity is required to obtain physi- 
cally consistent results. In Sec. 6 the variational procedure leads directly to Lagrangian 
equations with generalized coordinates. 

In Sec. 7 a new and completely general method of evaluation of the thermodynamic 
functions of the mixture is presented. It is valid for chemically reacting mixtures which are 
not perfect gases. 

A reformulation and generalization of the Gibbs-Duhem theorem is derived in Sec. 8 
using the convective potentials instead of the chemical potential. This new result avoids the 
difficulties due to the presence of undetermined constants in the chemical potentials and the 
entropy, resulting from the classical formulation. 

The translational invariance of the dissipation function for thermomolecular diffusion 
is discussed in Sec. 9. Along with the new Gibbs-Duhem theorem it shows that the field 
equations verify the total momentum balance. 

The results are directly applicable to gas mixtures at high temperature where the 
radiation pressure must be taken into account. This is briefly outlined in Sec. 10, and yields 
a powerful approach to problems of stellar dynamics. 

It should be pointed out that the analysis presented here incorporates two distinct 
features. One is represented by the principle of virtual dissipation which generalizes d’Alem- 
bert’s principle to non-equilibrium thermodynamics. The other is a restructuring of the 
thermodynamics of open systems which eliminates fundamental deficiencies of the classical 
approach of Gibbs. Some of the advantages resulting from these new developments are 
listed below. 

1. By a novel choice of cell and reservoir model including a chemical supply, the entropy 
and energy for open systems are given new unambiguous definitions as collective concepts 
based on purely physical operations, without the use of any statistical theory or the 
introduction of undetermined constants. 

2. Gibbs’ paradox is avoided within the classical framework. 
3. A convective potential is defined which replaces Gibbs’ chemical potential. The 

definition involves only physical properties in the limited range of temperature actually 
covered by the system. No use is made of physical properties near absolute zero and no 
undetermined constants have to be considered, in contrast with classical procedures. 

4. New concepts in chemical thermodynamics lead to new expressions for the heat of 
reaction and the affinity which are simpler and more general than classical results. 

5. There is no need to distinguish ideal and nonideal systems and results are universally 
applicable. 

6. The new concept of intrinsic heat of reaction is more representative of the true 
chemical energy than the standard heat of reaction since the latter contains the heat of 
mixing. 
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7. The differential equations of evolution are derived directly from a fundamental 
physical variational principle expressed by a single scalar relation independent of the 
coordinate system. This stands in contrast with usual procedures where the variational 
formulation is obtained from the field differential equations for each particular problem 
assuming these equations to be known. The method provides a unified approach which 
brings out the common mathematical structure of a large domain of physical laws and 
reveals the presence of new terms which had been overlooked. 

8. The unified mathematical structure yields an intuitive insight by analogy with sim- 
pler familiar phenomena. For example, the mass-spring-dashpot system becomes a univer- 
sal model for almost all of linear thermodynamics, and includes instabilities by considering 
negative springs. 

9. By using the Lagrangian formulation with generalized coordinates, simplified equa- 
tions are obtained for the evolution of large complex systems with coupled subsystems of 
diversified physical nature. These equations are obtained directly from fundamental physi- 
cal invariants. Finite-element methods are implicit. 

10. Considerable conciseness, generality and physical clarity is achieved in this unified 
thermodynamic approach to mechanics and physical chemistry. 

2. Thermodynamics of open mixtures. Before considering the thermochemical system, 
we shall briefly recall the thermodynamics of open systems presented in an earlier paper [l] 
for a nonchemical fluid mixture. We shall also add some clarifications regarding some basic 
physical properties of the new concepts involved. 

We consider a “ hypersystem ” constituted by a primary cell C, , supply cells Csk , and a 
thermal well T W. The primary cell is characterized by its temperature T and masses Mk of 
pure substances k added to the cell starting from a given initial state. In the present 
application the primary cell is assumed rigid. The supply cells Csk are large rigid reservoirs 
each containing a pure substance k. They are all at the same pressure and temperature p. , 
To. We have shown that this condition is necessary to avoid Gibbs’ paradox. The thermal 
well is a large rigid isothermal reservoir at the constant temperature To. 

Within the hypersystem C, + & Csk + T W, matter and heat are transferred to C, from 
the supply cells and the thermal well by reversible work. Heat is transferred by the use of 
heat pumps. The reversible process of transferring mass from one cell to the other is called 
thermobaric transfer. The energy 42 and entropy Y of the primary cell are given a new 
collective dejinition as the energy and entropy increase of the system C, + Ck C, . 

This definition is justified by the fact that 42 and Y are completely determined by the 
state variables of C,, namely its temperature T and the masses Mk added to it by thermo- 
baric transfer. Note that %! includes the work of extraction from the supply cells. The work 
accomplished reversibly on the hypersystem is 

-tr=Q--TOY 

and is called the primary cell potential. Its differential is 

(2.1) 

dV-=&bkdMk+8dsT 
k 

(2.2) 

where 0 = T - To is the excess temperature of C, over that of the thermal well. This 
differential is the work required to inject a mass dMk into C, by thermobaric transfer, and 
8 ds, the work required to inject into C, an amount of heat T dsT, where dsT is the 
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corresponding increase in entropy. The coefficient & is the thermobaric potential. Its value 

(2.3) 

is the work required for the thermobaric transfer of a unit mass of substance k. The integral 
is evaluated along an arbitrary path where the substance injected goes through a variable 
pressure pi, a variable density p; , a variable temperature T ’ = 8’ + TO, and increments of 
specific entropy dS,. The pressure pk is the pressure at which the substance is injected 
reversibly into the primary cell. We shall call it the injection pressure. In previous work we 
have used the term “partial pressure ” for pk. However, this creates COnfUSiOn since it is 
different from the traditional definition which designates as partial pressure the product py 
of total pressure p by the molar fraction y of the substance in the mixture. It is only for 
perfect gases that the two definitions coincide. The traditional definition is physically arti- 
ficial for mixtures of near-equal properties which cannot be separated by a physical process. 
In this last case the injection pressures tend to become equal, while the traditional partial 
pressures do not. This point is closely related to the avoidance of Gibbs’ paradox using the 
physical operational definition of entropy of the present thermodynamic theory. 

A relative specific entropy Sk and a relative specific enthalpy & of a substance in the 
mixture are defined as 

s PkT 

Sk = 

PO? 
k, ,=[I(2+Tfd$k). (2.4) 

The characteristic properties of the mixture are embodied in the injection pressure pk. 

is 
In the process of thermobaric transfer and heat injection the differential of entropy of C, 

dY=xSkdMk+dST. (2.5) 
k 

Elimination of ds, between Eqs. (2.2) and (2.5) yields 

dV-==C+,dMk+8dY (2.6) 
k 

where 

$k = It/k - es, 

defines a convective potential. From expressions (2.3) and (2.4) we also obtain 

(2.7) 

&=i&-- T.?,. (2.8) 

By contrast with the indeterminacy in traditional procedures, it should be noted that within 
a given hypersystem the quantities &, Ek and Sk are Completely defined and do not involve 
any arbitrary additive constants. This indeterminacy is acknowledged by Gibbs himself [2] 
and in standard well-known textbooks (Hatsopoulos and Keenan [3], Prigogine and Defay 
[4]). A further difference from the traditional approach is brought out by noting that the 
cell energy differential defined as a collective concept is 

d@==CkdMk+TdsT. 
k 

(2.9) 
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Elimination of dsT between relations (2.5) and (2.9) using the value (2.8) of & yields 

d%=.&j~dMk+TdX 
k 

(2.10) 

We see that $!& is similar to Gibbs’ chemical potential pk. However, (2.10) differs from the 
classical Gibbs equation by the fact that @ is a collective energy which involves the work of 
extraction from the supply cells. In addition, dY is not clearly defined in Gibbs’ treatment 
nor in standard textbooks where it is not explicitly written as (2.5). Finally, Eq. (2.10) 
constitutes a theorem and is not used to define +k as done traditionally when defining the 
Gibbs chemical potential. 

An interesting physical feature of the thermobaric potential $k is its definition entirely in 
terms of reversible work, which does not require the concept of entropy. This stands in 
contrast with & which involves the entropy. For isothermal transformations (T = TO), 
values of $k and +k are the same. Note that in linear problems for small deviations from 
equilibrium, relation (2.5) shows that sr becomes a state variable, and in this case the use of 
$k instead of 4,‘ greatly simplifies the analysis [S]. 

A continuous mixture may be considered as a collection of open infinitesimal primary 
cells, called collective primary system. A collective potential for this system is the volume 
integral. 

s 

Y 
v= V-da (2.11) 

R 

where Y is the cell potential per unit volume. 
For our purpose in the present application we have assumed no volume change of the 

primary cell. In order to derive some useful relations, a volume change dv of a cell is easily 
introduced. For example, expression (2.10) becomes 

d%=--pdv+&bkdMk+TdY 
k 

(2.12) 

by adding the term --p dv where p is the total pressure on the cell. In this case we consider a 
reversible injection of a mass dMk at constant pressure p and temperature T. For such a 
transformation we write 

hk 
dS, = S dMk 

T 
(2.13) 

where hiT dMk is the heat which must be provided to the cell. We have called hiT the heat of 
mixing at constant pressure and temperature [6, 71. Substitution of the value (2.13) into 
(2.5) yields 

dY=x 
k 

This is equivalent to the relation 

(2.14) 

(2.15) 

where the partial derivative is for a11 variables p, T and masses except Mk kept constant. 
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It is of interest to show that, using thermodynamic relations, hir may be determined 
without calorimetric measurements. From (2.12) we derive 

d(‘%++v-TY)=vdp+&5,dMk-9’dT. (2.16) 
k 

This, being an exact differential, implies 

(i%)pTM = -r%gp, (2.17) 

The partial derivative on the right side is for constant values of p and all masses Mk. It may 
be evaluated by expressing the differential of f&. From relations (2.4) and (2.8) we derive 

d& = : - & dT. 

When we vary only T, maintaining constant p and all values Mk, we obtain 

Combining relations (2.15) (2.17) and (2.19) yields 

(2.18) 

(2.19) 

(2.20) 

Hence the heat of mixing hiT at constant pressure and temperature is obtained by measur- 
ing the injection pressure pk of the substance k as a function of the temperature at constant 
pressure and constant composition. 

For a mixture of perfect gasses the injection pressure is 

Pk = PYk (2.21) 

where Yk is the molar fraction of each component in the mixture. In this case for constant 
pressure p and COnStant composition, i.e., COnStant yk, the injection pressure does not vary 
and therefore 

hiT = 0. 

Hence for perfect gas mixtures the heat of mixing 
vanishes. 

Similarly, we may define a heat of mixing htT 
leading to the value 

(2.22) 

at constant pressure and temperature 

at constant volume and temperature 

hkT=-;($+), 
u k 

In this case, however, it does not vanish for a mixture of perfect gases. 

(2.23) 

3. New chemical thermodynamics. When chemical reactions are involved the fore- 
going procedure of reversible thermobaric and thermal transfer within a hypersystem pro- 
vides a remarkably simple, rigorous and general treatment of chemical thermodynamics. 
Since new substances are created by the chemical reaction we must generalize the pro- 
cedure so that new substances may be produced reversibly within the hypersystem. This is 
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accomplished by adjoining to the hypersystem a chemical supply cell C,, which is a large 
rigid reservoir where the reaction is in equilibrium at the temperature T& and the injection 
pressures of the pure substances are pkeq . 

The chemical reaction is measured by a reaction coordinate [ such that the masses of 
the various substances produced by the reaction are 

dmk = vk d<. (3.1) 

Since there is no change of the total mass the coefficients vk satisfy the condition 

;vk=O (3.2) 

When a reaction d( occurs in the rigid primary cell C,, without exchange of mass or heat 
through the boundary, the energy % of the cell remains constant. We express this by writing 

a&& = 0 (3.3) 

The change of state of the cell due to the reaction is determined by the increase of masses 
dm, of the reaction and by the condition dqch = 0 since dmk and d@ are complete state 
variables of the cell. 

While the reaction causes no change of energy of the primary cell, it does produce a 
change of entropy. We have shown that this entropy may be evaluated by a reversible 
process which involves only classical concepts by thermobaric and thermal transfers within 
the hypersystem [6, 71. Since new substances are generated, we use the chemical cell C,, to 
produce these substances by a reversible process. We consider masses dm, to be produced in 
C,, by a reaction d{. They are referred to as masses “produced ” whether positive or 
negative. They are extracted from C,, and injected into the primary cell C, by thermobaric 
transfer. At the same time we inject into C, and C,, by thermal transfer required amounts of 
heat so that the energy of these cells does not vary. As a result the state of the cell C,, 
remains unchanged. The change of state of C, is determined by the mass increases dmk 
and the condition of zero increase in energy. Hence the state of the system C, + C,, + 
I,( Csk is now the same as if a reaction d(f had actually occurred in C, as a closed rigid 
adiabatic cell, while all other cells remain unchanged. Since the process has occurred re- 
versibly we may evaluate the collective entropy increase dY,,, by the procedures outlined in 
the previous section. It is equal and opposite in sign to the entropy increase of the thermal 
well. Since dae, = 0, it may also be evaluated from Eq. (2.1), which becomes 

dVc,, = - To dz?‘,, (3.4) 

where dY,,, is the reversible work performed on the hypersystem. 
The quantity dY,,, is the entropy produced by the reaction as an irreversible process. 

Hence it is always positive. 
It is interesting to note that we have been able to define this entropy in a precise and 

general way entirely within the framework of the classical thermodynamics of reversible 
processes. 

Following De Donder [S], we put 

dY,,, = $ d5 (3.5) 
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where A defines the affinity. When a reaction is in equilibrium, dY,,, = 0 and A = 0. If 
masses dMk and heat T dsT are injected into C, while a reaction d< also takes place in it the 
total increase in entropy dY of the cell is obtained by adding dYc,, to the value (2.5). This 
yields 

k 
(3.6) 

Under the same conditions the increase of energy d+2 of the cell is obtained by adding to 
(2.9) the energy increase da,,, due to the chemical reaction. However, according to (3.3), 
d4Ych = 0. Hence 

d’%==CkdMk+TdsT. 
k 

(3.7) 

The process of thermobaric transfer provides a very simple method of evaluating the 
affinity A and leads at the same time to new concepts and results regarding the heat of 
reaction [6,7,9, lo]. Consider a reaction dlj occurring in C, and the opposite reaction -dt 
occurring in C,, . The products dmk = vk dt are extracted from C, and injected into C,, by 
thermobaric transfer. At the same time an amount of heat i;,, dt is injected into C, so as to 
maintain constant its temperature T. Similarly an amount of heat -&+ dt is also injected 
into C,, so as to maintain constant its temperature Teq . In this process the state ofC, and 
C,, remains unchanged, hence also their pressures. Applying Eq. (3.6) to C, with dMk = 
- vk d< and d.sT = (&,,/T) dlj we obtain for its entropy increase 

dY=$dt-1 
k 

Vkik dt + + d& (3.8) 

For the chemical supply cell C,, the reaction is in equilibrium, hence A = 0. Its entropy 
increase is therefore 

Pg 
dY,,=~v&qd<-$-dt 

k =I 

where :iq and hi‘+ are respectively the values of Sk and R,, in the cell C,, . 
In the process no changes occur in the system C, + C,, + 1,‘ Csk . Hence 

(3.9) 

dY + dY,, = 0. (3.10) 

We substitute the values (3.8) and (3.9) into Eq. (3.10) and put 

Sk - $4 = k* (3.11) 

Solving the resulting equation for A/T yields 

(3.12) 

This is the new expression for the affinity as obtained earlier [6,7,9, lo]. 
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Similar reasoning is applied to the energy increases d% and de!,, of C, and C,, . 
Applying Eq. (3.7), we write 

(3.13) 
k 

d%q = c vkGq d< - pPl d& (3.14) 
k 

where Gq is the value of Ek in C,, . Again, since no change occurs in the system C, + C,, 
+ & Csk we put du%! + da!,, = 0. With the values (3.13) and (3.14) this equation yields 

s PIT 

i;,, - 4% = c vk 

ok q’.qdB k* 
k e 

(3.15) 

We may express the affinity by eliminating hp;pT between equations (3.12) and (3.15). Hence 

s PkT 

A=Cv, pk IT ,(T d% - d%) + 4% . 
k c e 

(3.16) 

Relations (3.15) and (3.16) also coincide with the results derived earlier [6,7,9, lo]. 
The quantity i;,T is a new concept which we have called the intrinsic heat of reaction. It is 

the heat of reaction when it takes place at constant pressure temperature and composition, 
the masses produced (positive or negative) being extracted as the reaction proceeds. It is 
more representative of the true chemical energy than the standard heat of reaction at 
constant pressure and temperature since the latter includes the heat of mixing. 

Note that the intrinsic heat of reaction hpT by its very definition is the heat of reaction, 
not only at constant composition pressure and temperature but also at constant volume. 
Hence if we denote by hvT the intrinsic heat of reaction at constant volume and temperature 
we may write 

i& = hpT. (3.17) 

It is easily seen that the standard heat of reaction hPT at constant pressure and temperature 
is given by 

hpT = h,T + 1 vk hkpT (3.18) 
k 

where hiT is the heat of mixing. Similarly, the standard heat of reaction at constant volume 
and temperature is 

hvT = i;“T + c Vk h;T. (3.19) 
k 

Both hiT and htT are given by expressions (2.20) and (2.23) which do not involve calori- 
metric measurements. 

In differential form we may write (3.15) as 

dli,, = 1 vk d&. 
k 

(3.20) 

This new result [6, 71 yields the intrinsic heat of reaction when both temperature and 
composition are varied. It is more general than Kirchhoffs classical expression of the stan- 
dard heat of reaction which considers only temperature variations. It differs also fundamen- 
tally from the classical result by the fact that Ek is defined by the properties of the pure 
reactants and the injection pressures. 
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An expression for the affinity formally similar to the classical result may be obtained by 
introducing the concept of chemical potential in a novel way. We assume that we may write 

d& + &(o) 1 , 
(3.21) 

(3.22) 

where the lower limit of integration implies an extrapolation to the solid state at absolute 
zero, while B&O) and Sk(O) are constants characteristic of the pure substances and indepen- 
dent of the particular reaction involved. With the values (3.21) and (3.22) Eq. (3.12) yields 
the aflinity in the form 

A = -1 vkpk (3.23) 

where we have put 

pk = 
s 

pk= 

(da - T d&) + .&(o) - Ti,(O) (3.24) 
0 

as a new dejinition of the chemical potential [9, lo]. (T is constant in the integration.) 
Eqs. (3.21) and (3.22) may be considered as additional axioms while the constants g&.(o) 

and Sk(O) are determined experimentally from chemical reactions. These values may also be 
derived from quantum statistical mechanics (Fowler and Guggenheim [ll]) but this is 
rarely practical and involves a large and ponderous additional branch of science. In the case 
of validity of Nernst’s principle we may put Sk(O) = 0. 

Using the affinity we may write Eq. (3.4) in the form 

d^y& = -Ad< +-8&Y’,,. 

By adding this expression to Eq. (2.6) we obtain 

(3.25) 

dV= -Ad<+.x<bkdMk+tldY 
k 

(3.24) 

where dY is now given by (3.6). This value of dV is the differential of the cell potential when 
masses dMk and heat are injected into the cell while a chemical reaction occurs at the same 
time. 

The state variables of the primary cell are now 5, Mk, Y where Mk are the masses added 
to the cell by convection as distinct from those added by the chemical reaction. The cell 
potential is a function of these variables 

V = r(<, Mk, 9) (3.27) 

and leads to the fundamental relations 

w-lay = -A, avpMk = 4k, avjasp = 8. (3.28) 

This may be generalized to the case where several reactions take place. For each reaction 
we write 

dm, = vkp d&, . (3.29) 
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The values (3.6) and (3.26) become 

(3.31) 

Elimination of dsT between (3.7) and (3.30) also yields 

de= -CA,dt,+z&dMk+Td9. 
P k 

(3.32) 

4. Principle of virtual dissipation for a chemically reacting system. The principle of 
virtual dissipation was formulated in the context of a fluid mixture occupying a domain R 
and expressed as Cl] 

C Zi 6qi + 
i s 

n(B, Y + 22 6~ + T 6~*) dSZ = 0. (4.1) 

It remains formally the same when chemical reactions are involved. In this equation ?lr is 
the cell potential of the mixture per unit volume. It is a function of &, , ML and 9, where &, 
is the reaction coordinate of each reaction for masses produced per unit volume, while Mk 
and Y are masses added and entropy, also per unit volume. The system is in a gravity field 
of potential Q and p is the density of the mixture. The termszi Ii 6qi represent the virtual 
work of the inertia forces. 

As before, we write 

9 = s* + s, s = -&$/ax, (4.2) 

where Si is the entropy transferred per unit area and s* is the entropy produced per unit 
volume with initial conditions Si = s = s* = 0. The summation convention is used for 
vectors and tensors. The entropy flux is 

si = c Sk n;i: + s:. 
k 

The dot indicates a time derivative. The rate of mass flow of each substance is ti;i, while S: is 
the entropy flux due to the heat flux. Hence s is the entropy supplied by convection and 
conduction (see below). 

Mass conservation is expressed by 

Mk = -aMf/lJxi (4.4) 

where Mk is the mass of each substance supplied by convection to the unit volume and MT 
is the total mass which has flowed through a unit area, with initial conditions 
Mk = Mf = 0. The density of the mixture may be written as 

aM: 
p=mo-I- 

k axi 
(4.5) 

where m, is the initial density. 
In (4.1) we vary S&, ,6Mf and SSi . The variation Ss* is also expressed linearly in terms of 

these variations. However, the variations are subject to two restrictions. Although the 
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actual system may exchange heat and mass through the boundary we assume that for the 
variations there is no such exchange. In addition, when varying 6Y in 6-V we put 6s* = 0. 
This is indicated by the symbol 6,. 

Consider first the chemical reactions. The local reaction coordinates 5, define the mass 
dm, of substance k produced per unit volume through the relation 

dmk = c vkp d&, . 

P 
(4.6) 

The rate of dissipation due to the chemical reactions is 

Ts’* = c A, 4, (4.7) 
P 

since (A,/T)l, is the rate of entropy produced by each reaction. In analogy with mechanical 
problems where dissipative stresses are expressed in terms of rates and velocities by taking 
into account kinetic properties, we shall express A, in terms of reaction rates thus introduc- 
ing the chemical kinetics. We may write 

awatp = - AP(Sa, Mk, y) (4.8) 

as a consequence of Eq. (3.31). Hence A, is a known function of the state variables &,, Mk, 

and Y. We shall assume that the rates of various chemical reactions may be derived from 
chemical kinetics and are completely determined by the local state variables <,, Mk, Y of 
the mixture. Hence we write 

4, =&CC > Mk, 9). (4.9) 

The possible influence of other rate variables on the reaction rates is therefore assumed to 
be negligible. We solve Eqs. (4.9) for 5, and substitute these values in A,. We find 

A, = B,(&, , Mk, 9’). (4.10) 

The affinity has thus become a rate function W, of 4,. The rate of dissipation due to 
chemical reactions may now be written 

Ts’*=CB?J,. (4.11) 
P 

In this form it embodies the chemical kinetics and is analogous to familiar expressions in 
mechanics when the rate of dissipation is evaluated in terms of velocities and viscosity 
coefficients. The corresponding virtual dissipation due to the chemical reactions is 

T6.9 = 1 W,S&. (4.12) 
P 

This virtual dissipation must be completed by additional terms due to thermomolecular 
diffusion and viscosity. They have been derived previously [ 11. 

Per unit volume, the dissipation function $+,,,, due to thermomolecular diffusion was 
found to be 

(4.13) 

The coefficients are functions of the local state variables. It is shown in Sec. 7 how they may 
be derived to obey the condition of invariance under a translation. As pointed out, the 
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quadratic form (4.13) implies the local validity of Onsager’s principle for thermomolecular 
diffusion [12,13]. The virtual dissipation due to thermomolecular diffusion is (with summa- 
tion convention) 

(4.14) 

The dissipation function due to the viscosity was also evaluated taking into account inter- 
molecular viscosity effects [l]. However, in practice is seems useful to introduce a sim- 
plification which requires only a knowledge of two overall viscosity coefficients of the 
mixture. This is obtained by considering the barycentric velocity Vi defined by the equations 

Vi = n;liJp, pi = C ni:. (4.15) 
k 

We put 

Uij = aui/axi. (4.16) 

The dissipative stress in the mixture due to viscosity is then expressed as 

Oij = Oji = q(Ufj + Vji) + 16ijVii (4.17) 

where q and 1 are viscosity coefficients of the mixture, functions of the local state variables, 
and 6, is the unit tensor. It may be written 

Cij = Bv/avij (4.18) 

where the quadratic form in Uij 

9~ = +ijVij (4.19) 

is the dissipation function due to viscosity. The corresponding virtual dissipation is 

T&* = c ij 6aij (4.20) 

where 

6&j = - a; j (; ; aM:). 
The total virtual dissipation due to the variations 6Mf, 6Si and St, is the sum of the values 
(4.12) (4.14) and (4.20). Its value is 

Comparing the terms Oij 6aij and gP St,, it is interesting to note that the dissipative stress 
aij is the tensor equivalent of the aflnity 9,. 

Finally we must also evaluate the virtual work of the inertia forces. We introduce the 
simplifying assumption that the acceleration of each component in the mixture is equal to 
its barycentric acceleration 
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The virtual work of the inertia forces is then 

where mk is the mass of the component k per unit volume. Hence we are neglecting all local 
accelerations due to the relative motion in a system in translation with the local barycentric 
velocity. This is consistent with the assumption of local validity of Onsager’s principle for 
viscous and diffusive forces, since this requires the Coriolis forces due to the relative motion 
to be negligible [14]. 

Physical signz&znce ofthe heatflux. In expression (4.3) for the entropy flux we may put 
S: = AJT where kz is the heat flux. It represents the heat which must be injected across a 
surface, in addition to the mass flux A@, in order to achieve the same change of state as due to 
the actualflow ofthe mixture. It includes what is commonly called the heat oftransport. 

Alternativeformulations. In the principle of virtual dissipation (4.1), 6, V is a restricted 
variation such that 69’ = - 8 GSJaXz . Since 6Sz = 0 at the boundary we have 

= R 
f( 

F~kSML-T~6S,)dn=SS~QdR (4.25) 
I cl 

and (4.1) takes the form 

CZi6qi+ (6,9+Y6p+T6s*)dn=O. 
I s n 

(4.26) 

On the other hand, for a system at constant temperature T = To or near equilibrium the 
principle (4.1) becomes 

C Zi 6q, + (6V + B 6~ + To) dR = 0 
t s 

(4.27) 
n 

where the variation is unrestricted and due only to 6Mk. 

5. Variational derivation of the dynamical field equations for a physical-chemical fluid 
mixture. The principle of virtual dissipation (4.1) has been used to derive the equations of 
motion of a viscous fluid mixture with thermomolecular diffusion [ 11. This derivation will 
be extended to a chemically reacting mixture. 

The components of the mixture undergo multiple chemical reactions measured by the 
reaction coordinates 5,. The state of the mixture is determined by the scalar fields Y, Mk, 5, 
or equivalently by the vector fields Sz, Mf and the scalar fields 5, and s*. We substitute in 
(4.1) the value (4.24) for the virtual work of the inertia forces, and put T as* equal to (4.22). 
We vary 6M!, 6Si and St, arbitrarily inside the domain 0. We proceed as earlier [l] taking 
into account the holonomic constraints (4.2) (4.4) and (4.9, namely 

b-’ = -; & @M:), ‘,Lf’ = 6s = - L (SSJ, 6Mk = - & (6Mf), (5.1) 
1 1 I 
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and integrating by parts. This yields 

To complete these field equations we must introduce an additional equation for the entropy 
produced s* by expressing the rate of dissipation as 

ZY*=29,,+29,+~A,&,. 
P 

(5.3) 

Eqs. (5.2) bring out a fundamental symmetry in the mathematical structure of the field 
equations. This is further illustrated by assuming the chemical reactions to be sufficiently 
close to local equilibrium, so that we may apply Onsager’s principle, by writing 

where 

gch =$ B,t,t, (5.5) 
UP 

is a dissipation function for the chemical reactions and B,,, are functions of the local state. 
We may now write the field equations as 

(5.6) 

with a single dissipation function 

9=9”+~,,+9,,. (5.7) 

This dissipation function may even be generalized by including cross-products of the type 
(LJu&)& which imply that an additional entropy is produced by the simultaneous action 
of a bulk rate and a reaction rate. It should be noted that this effect is different from the 
chemical relaxation associated with internal coordinates. 

Note that Eqs. (5.6) are directly applicable to linearized perturbations propagating as 
acoustic waves in a fluid reacting mixture in initial equilibrium. The treatment is entirely 
similar to the linear thermodynamic analysis presented elsewhere for the more general case 
of the initially stressed solid [S]. It was shown how the treatment may be simplified by 
using the variables ek and sr instead of & and Y. 

The field equations (5.2) may be written in more explicit form by substituting the values 

av -= 
a9 0 (5.8) 
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derived from the differential (3.31). Also by definition of BP, the following equations 

E+&+O 
a& 

(5.9) 

are equivalent to Eqs. (4.9) for the rate of reaction. Hence the field equations (5.2) may be 
written as 

acpk l aoij I a?tm _ o ai + axi - j axj 
ae agt, 

a@ 9 G+aS,=” 4, =f,, (5.10) 

where (Pk = $k -I- 3. 
By proceeding as earlier [l] we derive an energy flux theorem. We add Eqs. (5.2) after 

multiplying the first set by #, the second set by Si, and the third by 4,. After some 
algebraic manipulation this yields 

-ujoji+x&f(Pk+TSi +&++b=O. 
> k 

(5.11) 

In addition we may write 

n;i,q = j$fi $ + i&f, if 
axi 

(5.12) 

where v2 = vi Vi. Since hi = PUi, taking into account conservation of mass, we obtain 

&fi Ui = j) & (pU2) + f 2 (nil U2)* 
I 

With this value Eq. (5.11) becomes 

(5.13) 

(5.14) 

where 

Fi = $hi v2 - Vj aij + C &f~pk + Tit (5.15) 
L 

represents the energy flux. Notice that this implies that the kinetic energy per unit volume is 
&“. Hence it is assumed that the kinetic energy of the components relative to barycentric 
motion is negligible. This approximation is a consequence of the use of the barycentric 
acceleration ai in Eqs. (5.2) instead of the actual acceleration of each component as done in 
the earlier paper [l] for the case of a non-reacting mixture. It can be verified that in the 
presence of chemical reactions it is essential to use the barycentric acceleration in order to 
avoid spurious but negligible terms in the energy balance equation (5.14). This is physically 
consistent with the fact that the chemical kinetics we have adopted is for reactants without 
relative average transport velocities. 

6. Lagrangian equations. The principle of virtual dissipation (4.1) leads directly to 
Lagrangian equations for a chemically reacting mixture. We put 

# = Mj(4i, X19 t), sj = s,(qi 9 x1 9 t)~ tp = tp(4iv xl~ l), (6.1) 
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where qi are unknown generalized coordinates to be determined as functions of time. We 
also write the entropy produced as 

s* = s*(q;, Xl ) t) (6.2) 

where q: are auxiliary generalized coordinates. When substituting these values into the 
variational equations (4.1) we vary only qi and evaluate the corresponding variations 6M5, 
6S,, Stj, . We proceed as earlier [l]. In the presence of reactions the virtual dissipation 
contains an additional term 

T~s* = 
s 

Cc%, St, dl2 = Ri 6qi (6.3) 
nP 

(6.4) 

represents a generalized ufinity. With the barycentric acceleration the generalized inertia 
forces are 

Ii= a.sdQ. s R J &zi 

where Mi = xk M:. From these values we derive the Lagrangian equations 

Ii+ Ri+dD+E=Qi. 
%i a4i 

(6.5) 

(6.6) 

The dissipation function D and the mixed collective potential B are defined as before [l] by 

D = 
s 

(9, + 9,,,,) d!2, 9 = 
R s 

(SY + ~93) dR, (6.7) 
R 

while the generalized boundary driving force Qi is given by 

Qi=S ( Cjl aMj 

- Izf &Ii k A P 

- 1 (Pk nj 2 - 8nj 
I 

2 dA. (6.8) 

The integral is extended to the boundary A with the unit normal ni . The terms containing 
the dissipative stress are simpler in this result because we have used the approximate value 
(4.19) for 9” based on the viscosity coefficients of the mixture instead of the inter- 
molecular values in [l]. 

If the entropy produced s* is sufficiently small it may be neglected in describing the state 
of the system and the Lagrangian equations (6.6) provide a complete set for the unknowns 
qi. If this is not the case the equations contain additional auxiliary unknowns qf . They may 
be determined by writing the additional equation 

Ts’*=2~“+2S&,+~wJ, (6.9) 
P 

which is then assumed to be verified at a sufficient number of suitably chosen points to 
provide a complete set of equations for qi and q: . 
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Again proceeding as earlier [l], we may express the Lagrangian equations in terms of 
the kinetic energy of the fluid : 

(6.10) 

Eqs. (6.6) become 

--+&+Ri+ao+EQf 
adi 8% 

where 

Qi = Qi - i S v2nj 2 dA, 
A I 

Ai= &I,~&!*, s R aqi 

(6.11) 

(6.12) 

(6.13) 

di = 2Vj Oij) (6.14) 

i au. au. ( > 2-2 
(%= 2 axj axi . (6.15) 

Due to the use of the barycentric velocity these expressions are simpler than those 
derived earlier for the nonreacting mixture Cl]. 

In the particular case of small perturbations from equilibrium, the generalized affinity 
Ri may be absorbed in the dissipation function D, while &i is a higher-order quantity and 
Q: = Qi to the first order. Hence the Lagrangian equations become 

d aF 
Z &ji dqi aqi dq, 

(-)-~+~+~=Qia (6.16) 

These equations coincide with the general form of the Lagrangian equations of linear 
thermodynamics. 

7. Evaluation of the thermodynamic functions. It is assumed that the equations of state 
of the mixture are known as 

P=p@,mk, T), Pk = Pkb ml 9 T) (7.1) 

where mk are the masses of the various substances in the mixture of volume v and pressure p. 
The injection pressure of each substances in the mixture is &, and T is the temperature. 
These equations of state are obtained experimentally or derived theoretically from kinetic 
theories. Elimination of v between them yields 

Pk = Pkh mkT T). (7.2) 

The entropy differential of each pure substance per unit mass is 

(7.3) 

where 8,‘ is the specific volume. By definition of the specific heat C”, at constant volume, and 
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fromthe classical Maxwell relations we may write 

(%), = $, (z)T = ($gDk. 

535 

(7.4) 

With these values, 

&, = 93 
( > 

aT (7.5) _ 
Vk 

dfil, + 5 dT. 

The equation of state pK = pk(Ok, T) of the pure substance yields (Q+JaT),, . With this value 
(7.5) of dS, in Eqs. (2.4) we derive S, and & as functions ofp, and T. Using expression (7.1) for 
pk we then obtain Sk(u, ml, T) and .$(u, ml, T) in terms of V, ml and T. The value of the heat of 
mixing hiT is obtained from the equation of state (7.1) for pk by using the formula (2.20). 

We may now derive the values of the entropy 9’ and energy Q of a primary cell C, of 
volume u containing a mixture. They are defined as collective concepts in the hypersystem, 
constituted by the cell C,, supply cells Csk , a chemical cell C,, , and a thermal well. 

In the chemical cell Ccq, a chemical reaction of coordinate < may occur at chemical 
equilibrium at the temperature Teq. We start with a primary cell of zero volume, temper- 
ature T, and given concentrations. We then inject substances into it maintaining constant 
the concentrations, the pressure p and the temperature T. This may be accomplished by 
thermobaric and thermal transfer. The chemical cell is made to produce masses vk l which 
are extracted gradually while maintaining constant the temperature T,, . They are injected 
into the primary cell. At the same time masses Mk are transferred from the supply cells into 
the primary cell in order to maintain constant the concentration. During this process the 
pressure p of the primary cell is kept constant while sufficient heat of suitable sign is injected 
into C, and C,, in order to maintain constant their respective temperatures. At the end of 
the process the state of the cell C,, has remained unchanged and the stute of the system 
C,, + & Csk + C, is the same as ifa reaction 5 had occurred in C, and masses Mk had been 
transferred to C, from & C& . The volume of the cell C, has increased from zero to u. 

Actually the formulation is simplified by first transferring the masses vk t from the 
chemical cell to the supply cells C,k and from there to C, . The total masses which have been 
transferred from C,I, to C, are mk = vk 5 + Mk. Applying Eqs. (2.14) and (3.9), with a change 
of sign of d<, the differential increase dY of entropy of the system C,, + xk Csk + C, during 
the process is 

dY = Y,, d< + c ,4pk dmk (74 

with 
k 

y’“+L eq $v&q, Y,=,+$, (7.7) 

where gq denotes the value of Sk for the chemical cell. Since all intensive variables are 
constant during the process this is also the case for 9,, and .4pk. Hence we obtain 

y=Yeqt+Cykrnk (7.8) 

where mk are the masses in C, . The quantity 9’ difines the entropy of C, . 
Similarly the differential of the energy Q is 

d%! = @!eq d< + 1 %k dmk - p dv 
k 

(7.9) 
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where 

and Eiq iS the value of i$ for the chemical cell. Since p, %!eg and ??/k are also constant during 
the injection process we obtain for the energy of C, 

?@=%!eq<+x%!kmk-pv. (7.11) 
k 

The cell potential V is then derived from (2.1). 
Using the values (2.1), (3.16), (7.8) and (7.11) we may verify the relation 

%= --A~+~+kMk+Y7=-pv 
k 

(7.12) 

in which we may use either values (3.16) or (3.23) for the affinity. 
Similarly, using relations (7.6) and (7.9) we derive 

da= -Ad~+~~,dMk+TdY-pdv. (7.13) 

For a cell of unit volume we put v = 1. In this case dv = 0 and Eq. (7.13) coincides with 
(3.32). 

For simplicity we have assumed a single reaction; however, the results are readily 
generalized to multiple reactions, as in Eq. (3.32). 

For a mixture of perfect gasses without chemical reactions, hence for 5 = hiT = 0, we 
note the following additive property. 

9 = c &mk, %!!pv=z&mk. (7.14) 
k k 

The terms &mk and & mk are respectively the entropy and enthalpy of the mass mk of the 
component gas, occupying alone the volume of the mixture at the same temperature. 

8. Reformulation and generalization of the Gibbs-Duhem theorem. In the present con- 
text using the convective potentials f$k and the collective definition of the entropy 9, the 
classical Gibbs-Duhem theorem requires a reformulation. We differentiate the values (7.8) 
and (7.11) of % and Y, and obtain 

k k 

d~=~‘,,d5+C~kdmk+Cmkd~k-pdV-Vdp. 
k k 

(8.1) 

Taking into account the values (7.6) and (7.9) of the differentials, this yields 

; mk dY, = 0, c mk de’, - V dp = 0. 
k 

(8.2) 

From these equations we derive 

; mk(dak - T dYk) = V dp. 

Evaluation of d$Xk and dYk from the expressions (7.7) and (7.10) yields 

d%k - T dyk = d.$ - T d& + 4 dT. 

(8.3) 

(8.4) 
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We substitute the value of hi,/T obtained from (7.7). Hence we may write 

dqk - T dYk = d& + ,4pk dT (8.5) 

and Eq. (8.3) becomes 

We have put 

c mk d4k + 9’ dT = v dp. 
k 

(8.6) 

9’ = 1 mkyk. (8.7) 
k 

According to (7.8), it is the value Y of the entropy for < = 0, i.e. in the absence of chemical 
reactions. We shall call Y’ the convective entropy. It may be considered as a state variable. 
Eq. (8.6) constitutes the reformulation and a generalized form of the Gibbs-Duhem theorem. 
It is expressed in terms of the convective potentials &and the convective entropy 9’ 
instead of the chemical potential ,& and the entropy used in the classical form. The present 
formulation avoids the basic difficulty of the classical treatment which involves undeter- 
mined constants in pk and the entropy. For < = 0, we substitute Ypc = Y and obtain the 
result already derived earlier [7] in the absence of chemical reactions. 

For a cell of unit volume we substitute v = 1 and mk become the masses of the consti- 
tuents per unit volume. In a continuum, using (8.6), the total pressure gradient is obtained 
as 

With the value (2.18) of d$k and the value (8.7) of.!?” this becomes 

(8.9) 

(8.10) 

k For a perfect gas mixture we have hPT = 0 according to Eq. (2.22). Alsornk in this case is the 
mass of a unit volume of pure substance at the pressure pk, hence mk = Pk. Hence for perfect 
gases eq. (8.10) becomes 

(8.11) 

which is immediately evident from Dalton’s law. 

9. Translational invariance of the dissipation function and verification of the total mo- 
mentum equation. Consider again the thermomolecular dissipation function (4.13). It must 
be invariant under an arbitrary translation of velocity Vi. When such a translation is 
superimposed the mass flux increases from h: to &I: + mk Vi. The entropy flux as given by 
(4.3) is 

. 

According to the remark at the end of Sec. 4, we have put$ = fi,/T wherehi is the heat 
flux which must be injected through a fixed area in addition to the masses I@ in order to 
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We substitute the value of hk,,/T obtained from (7.7). Hence we may write 

&Yk - T dYk =dcjk+YkdT 

and Eq. (8.3) becomes 

c mk dc+k + L?” dT = v dp. 
k 

We have put 

(8.5) 

(8.6) 

Y’=~mkYk. 
k 

(8.7) 

According to (7.8), it is the value 9 of the entropy for c = 0, i.e. in the absence of chemical 
reactions. We shall call 9” the convective entropy. It may be considered as a state variable. 
Eq. (8.6) constitutes the reformulation and a generalized form of the Gibbs-Duhem theorem. 
It is expressed in terms of the convective potentials f$k and the convective entropy 9” 
instead of the chemical potential & and the entropy used in the classical form. The present 
formulation avoids the basic difficulty of the classical treatment which involves undeter- 
mined constants in pk and the entropy. For 5 = 0, we substitute Yspc = 9’ and obtain the 
result already derived earlier [7] in the absence of chemical reactions. 

For a cell of unit volume we substitute v = 1 and mk become the masses of the consti- 
tuents per unit volume. In a continuum, using (8.6), the total pressure gradient is obtained 
as 

With the value (2.18) of dt#k and the value (8.7) of 9’ this becomes 

(8.9) 

(8.10) 

For a perfect gas mixture we have hir = 0 according to Eq. (2.22). Also mk in this case is the 
mass of a unit volume of pure substance at the pressure Pk, hence mk = Pk. Hence for perfect 
gases eq. (8.10) becomes 

(8.11) 

which is immediately evident from Dalton’s law. 

9. Translational invariance of the dissipation function and verification of the total mo- 
mentum equation. Consider again the thermomolecular dissipation function (4.13). It must 
be invariant under an arbitrary translation of velocity vi. When such a translation is 
superimposed the mass flux increases from i@ to &f: + mk Vi. The entropy flux as given by 
(4.3) is 

. 

(9.1) 

According to the remark at the end of Sec. 4, we have put $ = hi/T where Eii is the heat 
flux which must be injected through a fixed area in addition to the masses i@ in order to 
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They are expressed as functions of T and the masses mk of each substance per unit volume. 
Similarly we write the injection pressure as 

p&k 9 T) = K“‘(P, 9 T) + pPdh 9 7-h (10.2) 

In vacuum the radiation pressure is [ 151 

P rad = Ppd = $7-4 (10.3) 

where c is Stefan’s constant. However, as pointed out by Brillouin [ 161, for a dense mixture 
the radiation pressures depend on mk and Pk. This is due to the fact that the group uelocity of 
the radiation in this case is not equal to the velocity of light in vacuum. 

Using the equations of state (10.1) and (10.3) we may derive all the thermodynamic 
functions by the procedure outlined in Sec. 7. Note that in Eq. (7.5) the specific heat I?‘: may 
be written as the sum of a molecular term and a radiation term 

,x; = Ct(moi) + ,$rad). (10.4) 

Let us consider the particular case where the molecular pressures are the same as for a 
perfect gas while the radiation pressure is the vacuum value (10.3). In this case, for a volume 
u of mixture 

pm% = c nk RT, pr’v = nk RT, (10.5) 
k 

where nk is the number of moles of each gas in the volume u and R is the gas constant. Also, 

p = pm”’ + +aT4, pk = pp’ + +oT4. (10.6) 

From (10.5) and (10.6) we obtain, for the injection pressure, the value 

pk = Ykp + iN4(l - Yk) (10.7) 

where Yk = It& nk is the molar fraction of each gas in the mixture. With this value of pk 
Eq. (2.20) yields 

h;= = ; 0T4(y, - 1). (10.8) 

Hence the mixture in this case does not behave as a perfect gas since hi= # 0. 
Taking into account the radiation heat oT4 per unit volume, the specific heat (10.4) 

becomes 

zi = ~d$d) + 4oT3 
Pk 

(10.9) 

where Ci(mo’) is the molecular specific heat of the perfect gas. 
With these results the theory is immediately applicable to very general problems of 

stellar dynamics. It yields either the field equations for Mf and Si or the Lagrangian 
equations of Sec. 6 where the problem is formulated by means of generalized coordinates. 
The latter method should provide a particularly powerful approach to problems of star 
oscillations with or without spherical symmetry. Actually, of course, the effect of ionization 
may also be taken into account by including the ionization energy in the chemical 
parameters. 
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