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The principle of virtual dissipation for irreversible processes in open systems is given a new formulation where 

variations are unconstrained everywhere including the boundary. As a complementary development a new chemical 

thermodynamics of open systems initiated earlier is given a simplified derivation and new results are presented. A new 

evaluation of entropy production for fully nonlinear reaction-diffusion along with the variational principle provide field 

and lagrangian equations of evolution far from local equilibrium with inertia and gravity forces. The earlier inconvenient 

use of the entropy produced as an auxiliary state variable is eliminated. It is shown that the description by lagrangian 

equations is complete and rigorous and constitutes a universal formalism derived from first principles. It does not require 

prior knowledge of continuum field equations and leads directly to a large variety of finite element methods. 

Applications to internal relaxation with quantum kinetics are also indicated. 

1. Introduction 

Lagrangian equations of thermodynamic 
evolution were developed originally in the linear 
context [l, 21 with applications to viscoelasticity 
with heredity and internal coordinates. 
Extension to nonlinear phenomena was 
obtained later. In the context of chemistry this 
work embodies two distinct phases, which in 
addition to the lagrangian formulation itself 
provide a novel approach to the chemical 
thermodynamics of open chemical systems 
[3,41. 

Our purpose here is to present further 
generalizations and clarification of this dual 
development. In sections 2-5, the results of the 
new chemical thermodynamics are recalled. 
Their derivation is simplified and new methods 
are presented for the determination of thermo- 
dynamic functions, based on the concepts of 
“injection pressure” and “intrinsic heat of 
reaction”. 

This new thermodynamics is based on a novel 
choice of cell and reservoir model which invol- 
ves a “chemical supply cell”. The undetermined 

constants of the standard approach are elimi- 
nated without recourse to quantum cryogenic 
properties. A new form of the Gibbs-Duhem 
theorem which embodies these advantages is 
thereby obtained. The basic features of chemical 
thermodynamics are established by remarkably 
short procedures derived from an operational 
thought process called “thermobaric transfer” in 
contrast with standard formalism. Physical 
clarity is also thereby considerably improved. 
One of the key concepts is the “intrinsic” heat 
of reaction which is more representative of the 
true chemical energy than that derived from 
usual definitions. 

A generalization of the principle of virtual 
dissipation is developed in section 6 which 
avoids the constraints imposed upon the varia- 
tions in earlier formulations [4,7]. Section 7 
shows how this leads to a general fundamental 
relation of entropy balance of biological systems 
which may be interpreted in terms of 
“equivalent” mechanical work. 

Section 8 presents a novel evaluation of 
entropy production valid for fully nonlinear 
thermomolecular diffusion and reactions while 
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sections 9 and 10 introduce new state variables 
which avoid the use of the entropy produced 
which was required in previous formulations in 
order to completely describe the system. Field 
and lagrangian equations are derived in sections 
11 and 12 directly from the generalized vari- 
ational principle for nonlinear evolution, far 
from local equilibrium, of reaction-diffusion sys- 
tems including inertia and gravity forces. 

The last two sections draw attention to the 
completeness and generality of the lagrangian 
equations as a universal mathematical 
framework unifying classical mechanics and 
thermodynamics. The completeness of the 
physical description by a finite number of cells 
of size above a resolution threshold may be 
extended to internal coordinates with relaxation 
effects and heredity by considering fictitious 
cells in the thermodynamic configuration space. 

The methods stands in contrast to standard 
variational procedures which require prior 
knowledge of the boundary conditions and field 
differential equations of the continuum for each 
particular case. Application of the principle of 
virtual dissipation avoids this requirement. Field 
and lagrangian equations are derived directly 
from first principles. In particular the lagrangian 
equations yield also directly a large variety of 
finite element methods, with fluence vectors at 
the grid vertices as generalized coordinates, 
without the use of any field equations of the 
continuum. 

2. Thermoharic transfer as a fundamental 
concept in the thermodynamics of open systems 

A hypersystem is constituted by a set of 
primary cells, supply cells, and a thermal well. 
The set of primary cells 1 CP is called the 
primary system. The thermal well TW is a large 
rigid isothermal reservoir at a given temperature 
To. The supply cells are of two types. The first 
are rigids cells Csk each containing a pure sub- 
stance k at the pressure pa and the temperature 
To the same for all supply cells of this type. 
They are assumed large enough so that a 
change of mass content affects the pressure and 
temperature in a negligible way. If a chemical 

reaction takes place between the various sub- 
stances k, we adjoin to the supply cells a 
chemical supply cell f& This is a rigid cell con- 
taining the reactants at a temperature and con- 
centrations such that the reaction is in equili- 
brium. We may add as many chemical supply 
cells as the number of possible reactions. The 
particular choice of a unique pressure and tem- 
perature for the cells Csk is needed to avoid 
Gibbs’ paradox [3]. 

Thermobaric transfer is defined as a reversible 

process by which masses are transferred from 
the supply cells into the primary cells while heat 
is added to various elements in a suitable way. 
We distinguish two kinds of thermobaric trans- 
fers. In the first kind the thermal well does not 
enter into play. In the second kind reversible 
heat pumps are used to inject heat mechanically 
by extraction from the thermal well. 

The thermobaric transfer of the first kind is 
described as follows. Consider a single primary 
cell CP whose walls are maintained rigid during 
the process. We extract adiabatically from a 
supply cell a small mass dMk of substance at 
the pressure p. and temperature To. By 
mechanical work on the mass dMk and injection 
of heat into it, in a gradual reversible continuous 
process, we bring the mass to a temperature T 
and a pressure pk such that it is in equilibrium 
with the primary cell Cr through a semiper- 
meable membrane. The mass dMk is then injec- 
ted reversibly and adiabatically into Cr. We call 
pk the injection pressure, In addition an amount 
of heat dh is injected reversibly into Cr. By this 
reversible process, in a sequence of infinitesimal 
steps, we may add finite masses Mk to C, and 
bring its temperature T to any desired value. 

In the second kind of thermobaric transfer, 
the heat injected into dMk and CP is generated 
by using reversible heat pumps, extracting heat 
from the thermal well. In this case the thermo- 
baric transfer is a reversible transformation 
obtained entirely through mechanical work on 
the hypersystem without any exchange of heat 
or matter with the environment. Thermobaric 
transfer of the second kind is important in rela- 
tion with the concept of exergy and in the 
analysis of irreversible phenomena. 
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3. Energy entropy and affinity defined as work of extraction from the supply cells Csk and 
collective concepts of injection into Cr. 

Consider a single primary cell C, and assume 
the cell to be rigid. Starting from a fixed initial 
state, any other state of the cell is determined 
by its temperature T and the masses Mk added 
to it. However if these masses have been added 
by thermobaric transfer from the supply cells 
Csk they ah0 determine the State of Csk. Hence 
the state of C, also determines the state of the 
collective system Cr + 1 Csk. Therefore we may 
define the energy % and entropy Y of the primary 
cell CP as the energy and entropy of the collective 
system C, + 1 CSk. They are functions of i& and 
T. This assumes that the change of state does 
not involve chemical reactions. Under this 
assumption as a first step we now evaluate the 
energy % and the entropy 9 of CP as collective 
concepts by using a thermobaric transfer of the 
first kind. By this procedure we inject masses 
dMk and heat dh into C, and obtain for its 
increase of energy and entropy the expressions 

d%==CkdMk+dh, 
k 

(3.1) 

(3.2) 
k 

where 

PIT 

POTO 

pscT 

& = (dp L/p; + T’ d&). (3.3) 

POTO 

We call pk, & and & respectively the injection 
pressure, the injection entropy and the injection 
enthalpy. In the integrals we denote by SLp,p$L 
and T’ the specific entropy, pressure, density, 
and temperature of the mass dMk along the 
path of integration in the thermobaric transfer. 
The term T’ dFk represents the heat injected 
continuously and reversibly into dMk during the 
transfer process. The value of & includes the 

Elimination of dh between eqs. (3.1) and 
(3.2) yields 

d%==CkdMk+TdY, 
k 

(3.4) 

where 

& = & - Tf;, (3.5) 

was called the convective potential [3]. It 
replaces the Gibbs chemical potential. By con- 
trast with standard procedures it contains no 
undetermined constant, while eq. (3.4) is not 
used to define 4,‘ but constitutes a theorem. 

An important remark is in order here. The 
undetermined constants of standard methods 
have been eliminated from the present 
definitions of &, & and &. In the classical 
approach even the differential d4k = 
dZk - T dFk -Sk dT involves the undetermined 
constant in Sk except for an isothermal transfor- 
mation, This was well recognized by Gibbs him- 
self in his famous paper [13] and remains so in 
standard textbooks [14,15]. 

Consider now the case where a chemical reac- 
tion occurs in Cp. The masses produced by the 
reaction are dmk = r+ dt where 4 is the reaction 
coordinate. An increase of temperature dT is 
also produced by the reaction. The same change 
of state of the system may be obtained by thermo- 
baric transfer as follows. We assume a reaction 
de to produce the masses dmk = Vk d[ in the 
chemical supply cell C,,. Taking into account 
their sign they are “extracted” from C,s and 
injected by thermobaric transfer into Cr where 
the reaction is assumed frozen. At the same 
time we inject into CL, an amount of heat @ 
such that its temperature remains constant and 
equal to Teq. Hence the injection pressures pkeq 
of Cch also remain constant. Into Cr we inject 
an amount of heat dh such that the temperature 
change dT is the same as if a chemical reaction 
dt had actually taken place in it. Obviously the 
state of C,, does not vary since its composition 
and temperature remain constant. On the other 
hand the change of state of C, obtained by 
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thermobaric transfer is the same as produced by 
an actual chemical reaction. However this 
equivalent thermobaric transfer is a completely 
reversible process since the chemical reaction in 
Cch is in equilibrium. The corresponding 
increase of energy d+?&, and entropy dYch of the 
collective system CP+ C,, may thus be derived 
by applying eqs. (3.1) and (3.2) replacing dMk 
by vk df and dh by PT” dt and dh. We obtain 

PIT 

d&,=;vkdc 1 dE;+@de+dh=O, (3.6) 

plc eq 7-q 

where 

da;=dp;/p;+T’dS’k. (3.8) 

We note that da,,, = 0 since otherwise by 
repeated cycling of a chemical reaction cancel- 
led by an equivalent thermobaric transfer we 
could extract energy indefinitely from the sys- 
tem. Elimination of dh between eqs. (3.6) and 
(3.7) yields dYch which we write as 

dYch = (Al T) de, 

where 

(3.9) 

pkT .sT 

dS; - 
I 3 

d& 

~lreqTeq PkWITeLl 

+,?XT/T,q-l) (3.10) 

expresses the affinity [3] as defined by De Don- 
der’s relation (3.9) [5]. The quantity /$ is the 
intrinsic heat of reaction at chemical equilibrium 
(see section 5 below). Since dach=O eq. (3.4) 
for do2c remains unchanged when a chemical 
reaction takes place in addition to a mass and 
heat transfer. However we may write it in an 
equivalent form 

(3.11) 

where dY now denotes the total change of 
entropy including the term (A/T) d,$ due to the 
chemical reaction. Adding eqs. (3.2) and (3.9) 
the total entropy change is obtained as 

(3.12) 

For simultaneous chemical reactions of affinity 
A, and reaction coordinate 5, the foregoing 
results are valid after replacing A d[ by 
&A, d&,. From (3.3) we also note the impor- 
tant differential relation 

dEk = dpk/pk + T d&. (3.13) 

We have assumed a rigid primary cell. Gen- 
eralization to a cell of variable volume ~1 and 
pressure p is trivial, and is obtained by simply 
adding a term -p dv to the value of da [3]. 

4. Chemical potential 

Eq. (3.10) shows that the affinity for any 
arbitrary state of the cell may be derived once 
we know the intrinsic heat of reaction @ for an 
equilibrium state of the reaction. This involves a 
knowledge of the properties of the pure reac- 
tants within the range of temperatures of prac- 
tical interest. 

Knowledge of I?$’ may be avoided by using a 
standard expression for the affinity written as 

A = -1 vkpk, 
k 

(4.1) 

where pk are the chemical potentials. However 
their values require the knowledge of cryogenic 
properties of the reactants down to absolute 
zero. This is shown as follows. 

The value (3.10) of A may be written in the 
form (4.1) by putting 

.% ..T,, 

@ =;vk[ j d&+&(O)], 

0 

pk e.aTea 

E=;vk[ j d&+6(0)]. 

0 

(4.2) 

(4.3) 
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The integrals at the lower limit of absolute zero 
are evaluated by extrapolating to the absolute 
zero, classical properties of the substances in the 
gaseous state while &(O) and S;,(O) are con- 
stants assumed to be characteristic of the sub- 
stance and independent of any particular 
chemical reaction. We may consider this 
assumption as a basic axiom. The constants 
&k(O) and Sk(O) are then determined experi- 
mentally from chemical reactions. Substitution 
of the values (4.2) and (4.3) into eq. (3.10) for 
the affinity yields an expression of the form 
(4.1) where 

prT PIT 

Fk = 
I 

d&--T 
s 

d&+&(0)-7&(0). (4.4) 

0 0 

This provides a novel and very general 
definition of the chemical potential [4]. 

For some simple substances the constants 
ak(0) and &(O) may be obtained by integration 
through the cryogenic range down to absolute 
zero by using the actual physical properties of 
these substances derived from the axioms of 
quantum statistics [6]. However this is not 
generally feasible in practice. 

The value of &(0)/&R where J& is the 
molecular weight and R the molar gas constant 
represents the so-called chemical constant of 
standard theories. 

5. Evaluation of the thermodynamic functions 

We shall consider again the case of a rigid 
open primary cell CP. Note that the rigid boun- 
daries may be fictitious and represented by fixed 
coordinate planes. Generalization to a cell of 
variable volume is trivial [3]. As already stated 
the energy and entropy of the cell are defined 
as collective concepts for the system Cp+ 
c Csk + Cch. They are functions of the tem- 
perature T of C,, the masses Mk added to it by 
convection, and the reaction coordinate 5 giving 
the masses vk[ added to it by the chemical reac- 
tion. As shown above the chemical reaction dr 
in CP is equivalent to producing a reaction d5 in 

C,,, extracting the masses vk d[ from Cch at con- 
stant temperature and injecting them in Cp by 
thermobaric transfer. Constancy of the tem- 
perature T,, of C,, is obtained by injecting into 
it an amount of heat @ d[. At the same time 
an amount of heat dh is injected into CP to 
generate any desired increase of temperature. In 
this process the state of C,, does not change. 
Applying equations (3.1) and (3.2) to the sub- 
system Cr+C Csk + C,h we derive its collective 
increment of energy and entropy as 

PLT 

pkeqTe, 

+xZkdMk+dh, 
k 

pkT 

(5.1) 

+xZk dMk+dh/T. 
k 

(5.2) 

The heat dh injected may be written as 

dh=Ch:T(dMk+vkdO+Cv,dT, (5.3) 
k 

where C,, is the heat capacity of the cell Cr for 
d[ = dMk = 0 and constant volume, while 
hET dMk is the amount of heat which must be 
added to the cell to maintain constant its tem- 
perature when injecting the mass dMk at con- 
stant volume [7]. We have called hiT the heat of 
mixing at constant volume and temperature. We 
have shown that its value is obtained without 
calorimetric measurement as [7] 

h% = -T/Pk @Pk/wOm. (5.4) 

It is given in terms of the injection pressure 

pk = pk(u, mk, T) (5.3 

expressed as a function of the volume v of the 
cell, of its temperature T and the total mass 

mk = v&-+Mk (5.6) 

of each substance added by the chemical reac- 
tion and convection. Relations (5.5) are derived 
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either experimentally or from kinetic theories, 
and may be considered as additional equations 
of state. The derivative in (5.4) is for constant 
volume u and mk, and pk is the density of the 
pure substance at the temperature T and 
pressure pk. 

Using the value (5.3) of dh we may integrate 
(5.1) and (5.2) over an arbitrary path and 
obtain the energy and entropy of the cell, 

0% = &, Mk, T), Y= 9’(& Mk, T), (5.7) 

as functions of & Mk and T. We may arbitrarily 
choose % = Y = 0 for any initial state of the cell. 
Using the values (3.10), (5.1) and (5.2) we 
derive 

(5.8) 

which’checks with (3.11) 
Evaluation of the thermodynamic functions 

for the case where the cell contains only an 
homogeneous mixture of fluids was also 
obtained by thermobaric transfer. We shall only 
recall here the result for the case 5 = 0. The 
entropy and energy were found to be [7] 

Y= c Ykmk, % = c %kmk -pv, (5.9) 
k k 

where 
k &=&+h;TjT %!k=&+hpT, (5.10) 

and mk is the total mass of each substance in 
the cell of volume v under the pressure p. The 
heat of mixing of each substance at constant 
pressure and temperature with de = 0 is denoted 
by hpk=. Its value was obtained as [7] 

h;T = - m&Pk/aT)~m, (5.11) 

where the derivative is for dp = dt = dMk = 0. 
For a mixture of perfect gases this result yields 
hpkT = 0. Hence in this case 

y”=c &mk, % +pv =c &mk, (5.12) 
k k 

showing the additive property of entropy and 
enthalpy of perfect gas mixtures. 

A new form of the Gibbs-Duhen theorem 
was also derived [7] as 

xmkd4k+YdT=vdp, 
k 

(5.13) 

where Y is given by (5.9) and mk includes the 
masses produced by chemical reactions. 

Intrinsic heat of reaction. It is denoted by h;- 
and was defined by the heat t& d.$ to be added 
in a reaction d& where the positive or negative 
products of the reaction are removed as the 
reaction proceeds and the temperature is kept 
constant [3,7]. As a consequence the volume, 
pressure and composition also remain constant. 
When & is known it yields the standard heats of 
reaction as 

hoT=&+C 
k 

hpT = LT +; vk+$T, 

the first at constant volume’ and temperature 
and the second at constant pressure and tem- 
perature. The values of htT and hpkT are given 
by (5.4) and (5.11) without calorimetric 
measurements, while & may be evaluated from 
the rigorous and general relation [4,7] 

dhT = c vk d&. 
k 

(5.15) 

For a perfect gas mixture hpkT = 0 and hpT = LT. 
Since the intrinsic heat of reaction does not 
involve the heat of mixing it is more representa- 
tive of the true chemical energy than the stan- 
dard concepts (5.14). 

6. Generalized principle of virtual dissipation 

A generalized formulation of the principle of 
virtual dissipation may be obtained directly and 
very simply from the concept of thermobaric 
transfer of the second kind in a hypersystem. 

Consider a primary system constituted by a 
set of cells C C,. Arbitrary variations are then 
given to the state variables in such a way that 
continuity of mass and heat flow between 
primary cells is preserved. In such a variation, 
masses are exchanged only between primary 
cells. At the boundary there are variations of 
heat and mass injected into the primary system. 
They represent an exchange of the open 
primary system with the environment. However 



M.A. Biot / Generalized lagrangian equations 17 

instead of the heat and masses being provided 
by the environment we may assume that they 
are injected at the boundary by thermobaric 
transfer of the second kind by extraction from 
supply cells and the thermal well. Hence we 
obtain an equivalent variation of state of the 
primary system entirely within the hypersystem 
without involving the environment. 

where 1iSqi is the virtual work of the inertia 
forces and S WM that due to the mechanical 
forces acting directly on the primary system. 

Obviously the virtual work accomplished in 
this variation is equal to the variation of energy 
of the hypersystem. This energy variation is 

SIJ+SUTw=SWTH+SWM (6.1) 

where U is the energy of the primary system 
defined as a collective concept hence as the 
energy of the system C Cr+C Cs, + C,s while 
UTw is the energy of the thermal well. On the 
right side SWTH is the variation of the work 
performed in the thermobaric transfer at the 
boundary and SWM is the virtual mechanical 
work of all other forces acting on the hypersys- 
tern. If STw denotes the entropy of the thermal 
well we have 

The variational equation (6.6) constitutes the 
fundamental generalized form of the principle of 
virtual dissipation. Except of the continuity of 
mass and heat flow between primary cells the 
variations are unrestricted anywhere including the 
boundary. The principle is thus freed from the 
constraints imposed in previous formulations 
[4,71. 

The exergy of a single primary cell is 

=lf=%-TOY (6.7) 

and the total exergy is 

V=CV, (6.8) 

where the summation is extended to all primary 
cells. 

From (3.11) and (6.7) for the case of multiple 
reactions we obtain 

s&w = To SST,. 

Hence (6.1) may be written 

6V+ To SS* =SWTH+SWM, 

where 

(6.2) 

(6.3) 

d~=-CA,dr,+C~kdMk+8d~, 
P k 

where e=T-TO 

V= U-T& (6.4) 

S*=S+STW, (6.5) 

and S denotes the entropy of the primary 
system defined as a collective concept. The 
expression V was shown in 1954-55 to be the 
fundamental thermodynamic function of 
irreversible thermodynamics [l, 21. It was later 
given the name exergy. The virtual entropy 
produced in the hypersystem is SS*. 

The exergy may be given an important phy- 
sical interpretation in terms of thermobaric 
transfer of the second kind. Consider an 
infinitesimal transformation without chemical 
reaction (dt = 0). The change of exergy is 

By extending d’Alemberts principle to the 
case where U is not merely the mechanical 
potential but the thermodynamic energy we may 
apply eq. (6.3) to dynamics by considering 
reversed inertia forces as being equivalent to 
external force acting on the system, and 
included in SW”. Hence we may write (6.3) as 

dV=d%--TOdY. (6.10) 

The transformation may be obtained by,a ther- 
mobaric transfer of the second kind. Since’it is a 
reversible transformation which occurs entirely 
within the hypersystem without exchange of 
matter or heat with the environment the total 
entropy of the hypersystem is constant There- 
fore -dY is the increase of entropy of the ther- 
mal well and -TO dY its increase of energy. 
Hence d”lr is the increase of energy of the 
hypersystem and is equal to the work on it by 
the external forces including the work of the 
heat pumps. On the other hand substituting into 
(6.10) the values (3.1) and (3.2) of d% and dY 
we obtain 

CIiSqi+SV+ToSS*=SWTH+SWM, (6.6) dM=x+, dMk+(8/T)dh, 
I k 

(6.9) 

(6.11) 
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where 

1+9/k = Ek - To& = & + t’s;, (6.12) 

is the thermobaric potential [3,7]. We note that 
& may be defined entirely mechanically as the 
work required to inject a unit mass of pure sub- 
stance into the primary cell by thermobaric 
transfer of the second kind. The term (O/T) dh 
in (6.11) is the mechanical work of a heat 
pump, required to inject a quantity of heat dh 
into the cell. 

The importance of the thermobaric potential 
l/lk is due to its physical significance in terms of 
mechanical work. By contrast with & it does 
not involve the entropy. It is also of importance 
in linear theories for small perturbations near 
equilibrium. In that case to the first order dh is 
a state variable. The general analysis may then 
be developed based on expression (6.11) for d‘Jf 
using & instead of &, resulting in considerable 
simplification and physical clarity [8]. 

Using these results, we may now derive 
explicitly the value of d WTH in the general 
variational principle (6.6) as, 

X 

SWTH=- 
I 

[$kaMF +(0/T) 8Hi]ni dA 

A 
5; 

I 

&-- 

= - (4k SMk + 8 SSi)ni dA. (6.13) 

A 

The integrals are extended to the boundary A 
of the primary system with unit normal ni, while 
-SMf and --aHi represent the variations of 
masses and heat injected through the boundary. 
We have put 

SSi=CSkSM: +6Hi/T 
k 

(6.14) 

as the variation of the entropy injected at the 
boundary. The boundary integral (6.13) rep- 
resents the mechanical work required to inject 
at the boundary by thermobaric transfer of the 
second kind masses -SM:ni and the heat 
-SHini. This thermobaric transfer obtained by 
purely mechanical work within the hypersystem 
is completely equivalent to an actual exchange 
with the environment. Hence 6 WTH may be con- 

sidered as the virtual work of thermodynamic 
forces exerted\ by the environment on the 
primary system. 

When the system is in a gravity field with no 
other forces acting on the system we replace 
SWM by J 

-6G- 
I 

$9 C SMrni dA 
k 

A 

where G is the potential energy of the system in 
the gravity field, and 5? is the gravity field 
potential per unit mass. The supply cells are 
assumed located on the equipotential surface 
9 = 0. The surface- integral is the work against 
the gravity field in the boundary thermobaric 
transfer. The principle of virtual dissipation 
(6.6) then becomes 

‘11i Sq, + SB + To SS* 
I 

=- 
I[ 

C (Pk SM: + O SSi ni dA, 
k 1 

A 

B=V+G, (Pk=4k+g. (6.9 

we have called 9 the mixed collective potential 
and pk the mixed convective potential [7]. 

We have considered variations SM~ and SHi 
of mass and heat transfer per unit area. We may 
replace 6 by time derivatives and consider the 
mass flux I# and heat flux hi. The dot denotes 
a time derivative. Expression (6.14) becomes 
the entropy flux 

Si = C fkk” +$Ii/ T. 
k 

(6.16) 

Within a flowing continuous system we consider 
a fixed surface of normal Iti. If we imagine the 
surface as a fictitious boundary we must inject 
through it masses Q,“ni and heat fiini if the flow 

field is to remain undisturbed. This must be true 
for all orientations Iti. Hence it defines the heat 
flux fii. By time integration of &l:, fii and Si with 
zero initial values we obtain the mass fluence 
M: the heat jluence Hi and the entropy jluence 
Si. With Cartesian coordinates xi, conservation of 
mass is expressed by 

Mk = -aM:/axi. (6.17) 
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7. Fundamental ~entropy balance of biological 
systems 

We neglect inertia forces and replace varia- 
tions by time derivations in eq. (6.3). We obtain 

On the left we have Tog* representing the useful 
energy dissipated by entropy production and the 
work -I@” accomplished against the environ- 
ment. The expression on the right side is 

TH w zz- 
I 

[$kh;rf + (e/ T)Eii]ni dA - VT (7.2) 

A 

where -&k:ni is the positive chemical contri- 
bution of matter acquired and lost. It is rep- 
resented here by the mechanical work of ther- 
mobaric transfer for an equivalent hypersystem. 
The term OlGlni/T carried to the left side of (7.2) 
represents the useful energy lost to the environ- 
ment in the form of heat. It is equal to the 
equivalent mechanical work of a heat pump. The 
concept of thermobaric transfer thus provides a 
vivid illustration of entropy balance in biological 
systems in terms of equivalent mechanical work. 

8. New evaluation of entropy produced 

Systematic and general methods of evaluation 
of entropy production are illustrated hereafter 
by considering the particular case of a con- 
tinuous system with heat and mass transfer in 
the presence of chemical reactions. The flow is 
referred to a fixed coordinate system which may 
or may not be identified with a rigid material 
through which diffusion takes place. Hence the 
treatment includes the particular case of a fluid 
mixture [7]. For a continuous primary domain Q 
we denote by %, Y and Yf the energy, entropy 
and exergy per unit volume. 

The variation of entropy is obtained from 
(3.12) as 

69 = C (A,/ T) S.$,, + C s;, 6Mk + Sh/ T. 
P k 

03.1) 

it is important to remember that Sh is the heat 
added reversibly per unit volume. In terms of 
the heat fluence Hi it is written 

Sh ‘= 6hp - d SHi/axi, (8.2) 

where ShP is the heat which must be injected 
reversibly in addition to -a SHi/axi in order to 
obtain. the same change of state as in an actual 
irreversible process. Hence hP may be called the 
heat produced by the irreversibility. It corres- 
ponds to the “uncompensated heat” of Clausius. 
After substituting the values (6.17) of Mk and 
the value (8.2) of Sh we may write (8.1) as 

S9 = -a GSJaXi + 6s”. (8.3) 

where SSi is equal to (6.14). The variation of 
entropy produced per unit volume is Ss*. Using 
(8.1) and (8.2) it is given by 

(8.4) 

On the other hand the variation of energy is 
obtained from (3.1). Substituting the value (8.2) 
of Sh we write 

,~I- 
au = 1 Ek SMk + 6hP - a SHJaxi. (8.5) 

k 

Again substituting the value (6.17) and integrat- 
ing over the domain R we obtain 

where Ek SMf + SHi is the variation of energy 
flow. On the other hand conservation of energy 
is expressed by 

+C 93i SM: do, 
k 1 
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where LBi is the body force per unit mass and 
Ck Wi Si@ is the virtual work of these forces. 
Comparing expressions (8.6) and (8.7) which are 
valid for an arbitrary domain n we conclude 

(a&/&) SM: + ShP = C 8j SM;. 
k 

(8.8) 

By elimination of ShP between eqs. (8.4) and 
(8.8) taking into account the differential rela- 
tion (3.13) we obtain 

TSs*=CApS~~+~XXikSMf+XTSHi (8.9) 
P k 

where 

X: = 33, - (l/pk) aPk/aXi, 

XT = -(l/T) aT/axi (8.10) 

are disequilibrium forces along with A,. An 
important step is to express these forces in 
terms of rate variables. Consider first the 
chemical reaction. From chemical kinetics we 
may determine the reaction rates &, as functions 
of the state variables &,, Mk and T of the cell. 
Solving these relations for 5, and substituting 
these values into A, we write 

A, = .%,(&, Mk, T). (8.11) 

Hence the disequilibrium chemical forces L?&, are 
now expressed in terms of the rates & and 
involve chemical kinetics. As can be seen these 
chemical forces are the scalar equivalent of 
viscous stresses expressed in terms of strain rates. 

We imagine that we may freeze the chemical 
reactions and obtain either experimentally or 
theoretically the relations between the disequili- 
brium forces and the flow rates ti: and hi. 
They are written 

x: = L?? i” (hi;, &,, XT = %:(A&, fij). (8.12) 

Eq. (8.9) then becomes 

TSS*=C~~S~,+C~~SM:+~ZSH~. (8.13) 
P k 

Instead of Hi and fii as variables we may intro- 
duce the entropy fluence Si and the entropy flux 
St. Solving eqs. (6.14) and (6.16) for SHi and fii 
and substituting these values into (8.13) we 

obtain 

TSS*=~R,S~~+~~:~SM~+~S~SS~, (8.14) 
P 

where 

3 Sk (hi:, Si) = 9 f - E!&%! T, (8.15) 

%T’(tif, Si) = T%!T (8.16) 

Note that the rate functions 3)” and %!T depend 
not only on the fluxes Q: and I;r;: but also on 
the local state variables although this is not 
indicated explicitly. 

The present derivation of entropy produced is 
fully general and does not assume linearity or 
any dependence on Onsager’s principle. 

Replacing the variations by time derivatives, 
(8.14) becomes the rate of dissipation 

TS*=C~2,~~+C~~khjk+~ZSTSi. (8.17) 
P k 

It is a function of the rates &, iL?: and Si with 
the property TS” 2 0. 

The rate functions introduced here do not 
assume any linear dependence of the forces on 
the fluxes. For example they may include the 
nonlinear diffusion of a non-newtonian fluid 
through a porous medium. 

In the case of a linear dependence, and in the 
absence of a temperature gradient, we write the 
linear relations 

%! T(&?j, flj) = 0. (8.18) 

If we solve these relations for I;r;: the 
coefficients of hi; constitute what is generally 
called the “heat of transport”. 

When in addition to being linear the relations 
between fluxes and forces satisfy Onsager’s 
reciprocity properties [9, lo] the value (8.14) 
becomes [4] 

agTM 
+ - 6s. 

aSi ” 
(8.19) 

where Ph is a quadratic form in the reaction 
rates &, and gTM a quadratic form in the fluxes 
k: and Si. Replacing the variations by time 
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derivatives and applying Euler’s theorem for 
quadratic forms we derive the rate of dissipation 
as 

TS” = 2@ + 2$BTM. (8.20) 

The coefficients of the quadratic forms depend 
on the local state. 

We note that Si and s* assuming zero initial 
values satisfy a fundamental entropy balance 
equation 

Y = -&$/a& + S * (8.21) 

whose variational form was already expressed 
by (8.3). 

The total entropy produced to be used in the 
variational principle (6.15) is 

6s” = 
I 

Ss” dR. (8.22) 

n 

9. Alternative choices of state variables 

Equations of evolution of the thermodynamic 
system are obtained in various forms depending 
on the choice of state variables to describe the 
system. 

A simple approximate description,is obtained 
by neglecting the entropy produced s*. We may 
then write (8.21) as 

9 = -aSi/aXi (9.1) 

and use the entropy fluence Si along with M: 
and &, as state variable. 

Another possibility is to neglect the entropy 
produced by thermomolecular diffusion. In that 
case we introduce a pseudo-fluence of entropy 
ST as state variable and write 

9 = -&/ax, (9.2) 

along with 

- &/axi = --&$/ax, + C (%‘,I T)&. 
P 

Hence 

(9.3) 

where gi(xj, xf ) is any flux due to a unit concen- 
trated source at the point XT. Replacing the 
time derivatives by variations, 

SSi=SSt+ 
I 

gi(xi, ~7) 5 $ Sg dR+. (9.5) 

o+ 

With this value in (8.14) the virtual dissipation 
TSs” is expressed in terms of the state variables 
ST, Mf and 5,. A procedure which does not 
involve any approximation is obtained as fol- 
lows. Replacing differentials by variations and 
introducing the value (8.2) of Sh, eq. (3.1) is 
written, 

8% = 1 Ek SMk + ShP - a SHJaxi. (9.6) 
k 

Equating the values (8.4) and (8.13) of TSs”, 
taking into account relations (8.10), (8.11) and 
(8.12) we obtain 

T $s,ja& + ShP = 1%: SM;. 
k 

(9.7) J,s, *+ 

Elimination of ShP between eqs. (9.6) and (9.7) 
yields 

a& 
S%=~EkSMk-T~-&@ 

k k axi 

+ C 92 : SMf - a SHi/axi. (9.8) 
k 

Further transformation is obtained by applying 
the mass conservation equations (6.17) in 
variational form. Hence 

S%=-$ gEkSM:+SHi 
I [ 1 

+;[$Tz]SMf 

+C&SM;. 
k 

Applying eq. (3.13) to the bracket in the second 
term yields 

SQ=-$ 
S 

zEkSMf+SHi +Cf:sMf, 1 (9.10) 
k 

where 

(9.11) 
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potential is 

LP= Y+&Mk dR. 1 
The virtual work of the inertia forces is 

(11.1) 

(11.2) 

n 

where a: is the acceleration of the substance k. 
It may be expressed as 

v: =tif/mk (11.3) 

where U: is the velocity of the mass mk of 
diffusing substance. Following an earlier remark 
[7] regarding the definition of the acceleration 
of reacting substances inconsistencies are 
avoided by using the barycentric velocity of 
each group of reacting substances to define the 
acceleration of each substance. It can be shown 
that this procedure satisfies energy conservation. 

In applying the variational principle we may 
choose to vary any suitable variables. In the 
present case it is convenient to vary &, it4: and 
Si. The variations will be applied only inside the 
domain R so that SWM and SWTH vanish at the 
boundary. The variational principle (6.15) then 
becomes. 

R 

(11.4) 

Referring to eq. (8.3) we may write 

6~+ceCSMk=-CA,S5,+CcpkSMk 
k 0 k 

+ @(-a sSi/a.Xj +SS*). (11.5) 

We have put in accordance with (6.15) 

(Pk=‘$k+%. (11.6) 

From (6.17) we also write SMk = -(a/axi) SMf. 

Hence the variational equation (11.4) becomes 

a SSi 
-8- +T.s* da=O. 

axi 1 (11.7) 

We integrate by parts and insert the value 
(8.14) of TSs*. Cancelling the coefficients of 
the arbitrary variations S&,, SMf and 6Si we 
obtain 

-A,+W,=O. (11.8) 

These field equations contain the variable $ 
which is a state variable only if s* may be 
neglected in eq. (8.21). In earlier work we 
added the auxiliary equation (8.17) to deter- 
mine the entropy production s* which along 
with Si yields the entropy Y through eq. (8.21). 
With the new procedure developed above, this 
is not necessary, since the value (9.18) of Si 
may be introduced in eqs. (11.8). The only 
unknowns are then the state variables &, gi and 
Mf. The field equations (11.8) thus become 
integro-differential equations in these state 
variables. 

An analogous approach is also obtained by 
neglecting the contribution of diffusion to the 
value of s* using ST of eq. (9.2) as a state 
variable. 

The field equations (11.8) are applicable to 
nonlinear diffusion such as represented by a 
mixture of non-newtonian fluids in a porous 
medium. 

The dynamical case of a reacting gas mixture 
with newtonian viscosity, thermomolecular 
diffusion and radiation pressure has been 
developed in detail earlier [7]. 

12. Generalized lagrangian equations far from 
local equilibrium with gravity and inertia 

In previous work lagrangian equations were 
discussed in the particular case where the local 
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The present treatment opens the way to a 
completely general lagrangian analysis of reac- 
tion-diff usion phenomena which are nonlinear 
and far from equilibrium. The state variables 
are the fields 

irreversible process is linear and near equili- Using eqs. (9.15) and (9.18) the variation SSj 
brium [4]. and the entropy flux Sj are obtained from 

T SSj = Cc.Yji Sqi, TSj = 1 Lfjiii, (12.6) 
I I 

where 

9j = gji(41, q29 ... 9 XI), 

Mf = #%l, q2, . . . , XI), 

&l = 5Ph, q2, -** , XI), (12.1) 

as given functions of the coordinates XI and a 
finite number of unknown parameters qi, func- 
tions of time, called generalized coordinates. In 
the completely general case the functions (12.1) 
may also contain the time explicitly. 

The only external forces are gravity forces, 
and the variational principle (6.15) is applicable. 
We write 

Cli&i+SP+7’0 Ss*dSZ=6WTG, 
I I 

(12.2) 

n 

with 

SW=o= _ 
I[ 

C (Pk SMf + 0 SSi)ni dA. 
k 

A 

The value P(qi) is a function of the generalized 
state variables qi. By varying qi we obtain 

The field variations due to 6qi are 

Similarly the time derivatives are 

(12.3) 

(12.4) 

(12.5) 

The virtual dissipation is derived by substituting 
the values (12.4), (12.5) and (12.6) in 
expression (8.14) for TSs”. This yields 

To 
I 

6~” dR = C Ri 6qip (12.8) 
I 

n 

where the generalized dissipative force is 

(12.9) 

It is a function of qi and their time derivatives 
(ii. The generalized inertia forces as given by 
(11.2) are 

(12.10) 

The virtual work SWTG of the gravity- 
thermodynamic forces at the boundary A is 
obtained from (12.2). We write 

6 WTG = 1 Qi Sqi, (12.11) 
I 

where Qi is given by the boundary integral 

(12.12) 

It is a function of qi and 4i. Its dependence on 
4i is due solely to the fact that f; in the value 
of LZji depends on the set of flux variables a;. 
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Substituting expressions (12.3), (12.8), (12.10) 
and (12.11) in the variational principle (12.2) 
yields the lagrangian equations 

6 + &P/aqi + Ri = Qi. (12.13) 

They govern the time evolution of the general- 
ized coordinates describing the state of the reac- 
tion-diffusion system. They belong to the same 
general type as those governing the evolution of 
a large class of thermodynamic systems. The 
kinetics and dissipation are embodied in the 
term Ri which satisfies the inequality 

1 Riki 30. (12.14) 
i 

If inertia effects and gravity forces are negli- 
gible we put & = 0, 9’ = V. Also we have shown 
that in this case f: = 0. Hence a simplified value 
of Zji is obtained as 

LZii = XFis;./aqi - 1 ~$k aMf/aqi, 
k 

(12.15) 

and the lagrangian equations become 

a V/aq; + Ri = Qi. (12.16) 

Note that in many problems even when the 
inertia and body forces are not negligible the 
value of f: remains small so that putting f: = 0 
as an approximation will be justified especially 
since the formulation is thereby considerably 
simplified. In this case Qi does not depend 
on 4i. 

13. Completeness of macrophysical description 
by generalized coordinates - Resolution 
threshold of cells 

The present treatment of thermodynamics 
emphasizes the description of a complex system 
as an assemblage of cells. From a fundamental 
viewpoint the size of these cells may be chosen 
extremely small remaining above a resolution 

threshold below which the stptistical average 
definitions of temperature and entropy break 
down, and fluctuations enter into play. From the 
macroscopic viewpoint the system of cells is 

determined by a finite number of generalized 
coordinates, which as pointed out earlier [ 1 l] 
provide a complete physical description. As a 
consequence the corresponding lagrangian 
equations describe rigorously the evolution of 
the system. It is important to note that the use 
of a continuum model is an extrapolation 
beyond the validity of physical laws. While 
fashionable with the mathematician the con- 
tinuum model which implies spatial derivatives 
and the concepts of measure is not more 
rigorous. Moreover it introduces spurious 
difficulties regarding completeness and measure 
which are irrelevant in the physical context. 
These remarks find confirmation in recent work 
by Woods [12] who has demonstrated lack of 
physical validity in the formalism of the current 
fashionable continuum mechanics and thermo- 
dynamics. 

By contrast the lagrangian equations provide 
a rigorous universal mathematical framework 
for the evolution of macrophysical systems. A 
deep and unified insight is thus achieved which 
brings to light common types of behavior shared 
by all such systems. 

Finally one should add that the principle of 
virtual dissipation provides directly either the 
field equations or the lagrangian equations from 
first principles using fundamental physical 
invariants and including boundary conditions. 
Great flexibility is thereby achieved in the 
choice of variables and coordinate systems 
without using tensor analysis. The procedure 
constitutes a complete reversal from standard 
methods which derive variational principles by 
requiring prior knowledge of the differential 
equations and boundary conditions for each 
individual case. 

The lagrangian equations also provide the 
foundation for a large variety of finite element 
methods, where the state of the finite cells is 
described by generalized coordinates which may 
be fluence vectors at the grid vertices. The 
evolution of the system with a finite number 
of these coordinates is governed by the 
corresponding lagrangian equations obtained 
directly without prior knowledge of the field 
differential equations of the continuum. 
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14. Lagrangian equations with resolution temperature and entropy. The kinetics of 

threshold in configurational subspace. Internal exchanges obeyed by the fluence coordinates is 
relaxation, order disorder phenomena and then obtained from transition probabilities and 

quantum kinetics quantum statistics. 

The concept of threshold minimum size of 
cells as described above for physical three 
dimensional space may be extended to sub- 
spaces in the abstract multidimensional 
configurational thermodynamic space. For 
example we may consider the translational, 
rotational, and vibrational degrees of freedom 
of gas molecules as constituting distinct sub- 
spaces, which are then divided into cells above 
minimum threshold size each with their own 

entropy and temperature. The state of an 
assembly of such cells is then determined by 
mass and energy fluence between these fictitious 
cells. Following the same procedures as used for 
cells in physical space completely general 
lagrangian equations of evolution may be for- 
mulated including the exchanges between cells 
represented by internal fluence coordinates. In 
particular this approach is applicable to internal 
relaxation effect due to molecular rotation and 
vibration in gases. 

The same procedures may also be used for 
order-disorder phenomena in metal alloys 
where the order-disorder state is described by 
internal fluence coordinates. 
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