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FUNDAMENTALS OF GENERALIZED RIGIDITY MATRICES FOR 
MULTI-LAYERED MEDIA 

BY MAURICE A. BIOT 

ABSTRACT 

Rigidity matrices for multi-layered media are derived for isotropic and ortho- 
tropic layers by a simple direct procedure which brings to light their fundamental 
mathematical structure. The method was introduced many years ago by the 
author in the more general context of dynamics and stability of multi-layers 
under initial stress. Other earlier results are also briefly recalled such as the 
derivation of three-dimensional solutions from plane strain modes, the effect of 
initial stresses, gravity, and couple stresses for thinly laminated layers. The 
extension of the same mathematical structure and symmetry to viscoelastic 
media is valid as a consequence of fundamental principles in linear irreversible 
thermodynamics. 

INTRODUCTION 

In a recent paper (Kausel and Roesset, 1981), stiffness matrices were derived for 
isotropic multi-layered media starting from the Thomson-Haskell transfer matrices. 
However, such stiffness matrices were already derived many years ago (Biot, 1963, 
1965) and discussed in great detail in the more general context of orthotropic multi- 
layered solids under initial stress. The derivation was not based on the Thomson- 
Haskell matrices but used instead a direct approach which is extremely simple and 
takes advantage of the physical symmetry of the layers. The fundamental mathe- 
matical structure of the 4 X 4 stiffness matrix is thus brought to light, forming a 
symmetric matrix of six independent terms. The structure is valid for a wide range 
of physical systems and embodies the basic reciprocity properties of cross imped- 
ances of linear conservative systems. 

In the present paper, the method has been used to derive the stiffness matrices 
directly in the particular c&e of isotropic and orthotropic layers without initial 
stress, and it is shown how these results are also obtained from the earlier ones. The 
basic equations for multi-layers are obtained in the form of recurrence equations for 
displacements at three successive interfaces, and it is recalled how they may be 
written in compact form as a variational principle including the effect of initial 
stresses, gravity forces and couple stresses. 

Using the earlier developments (Biot, 1966, 1972b, 1974), it is shown how simple 
plane strain solutions lead to a large class of three-dimensional solutions for 
transverse isotropy without any additional evaluation of matrix elements. 

Finally, for viscoelastic materials whose heredity properties are based on linear 
thermodynamics with Onsager’s reciprocity relations and internal coordinates, it is 
recalled that all results remain formally valid with complex functions of the fre- 
quency replacing the elastic coefficients. The complex matrices exhibit the same 
mathematical structure as in the elastic case. 

STIFFNESS MATRIX OF SYMMETRIC AND ANTISYMMETRIC MODES 

A single isotropic elastic layer is analyzed for plane strain in the x y plane normal 
to the layer. The thickness of the layer is h, and the x axis is parallel to the layer 
and equidistant from the faces. These faces are thus represented by the planes 
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y = 2 h/2. We denote by u and u the displacements along x and y defining the plane 
strain components as 

au au 
exx = - 

ax 
e,, = - 

ay 
(1) 

The corresponding stresses are 

u xx = He,, + (H - 2L)e, 

a,, = (H - 2L)e, + Heyy 

a,, = 2Le, (2) 

where H = X + 2p, L = p, and A, p denote the Lam6 constants. We use L instead of 
p in order to avoid a change of notation in the more general cases. For harmonic 
time dependence, solutions are proportional to the factor exp(iot). This factor may 
be omitted in all formulas. The dynamic equilibrium equations are then 

_+++ppw2v=o achy 
ax ay (3) 

where p is the density. For the particular case of an isotropic medium, equations (1) 
to (3) are solved by the classical procedure of decoupling of dilatational and 
rotational waves. The values of u and u are then obtained by putting 

aq a+ acp ali, 
UC---_ u=-+- 

ax ay ay ax (4) 

where the scalars ‘p and 4 satisfy the two wave equations 

HQ2, + pw2rp = 0 LV2, + p&P+ = 0 

v2 = a2 a2 
2+7. 

ay 

The following solution is immediately derived 

u = U(ly)sin lx v = V(ly)cos lx 

where 

U(~Y) = CI sinh ,& ly + Czsinh ,B2 ly 

v(&) = -C&cosh ,8, ly - 2 cash fi21y 
P2 

with 

W"P PI” = 1 - #j p2” = 1 - $ 

(5) 

(6) 

(7) 

(8) 
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and arbitrary constants CI and CZ. The solution represents an antisymmetric 
standing wave of the layer corresponding to flexural deformation of wavenumber I 
along x such that 

Putting y = lh/2 we obtain 

U, = Gsinh ,&y + Gsinh pry 

V, = -C&cosh ,&y - ; cash ,&y. 
2 

(IO) 

The stresses are obtained by substituting into (2) the values (6) for u and u. They 
may be written 

(JXY = T(ly)sin lx CJ,, = q (ly)cos lx (11) 

with the antisymmetric property 

In calculating these values, the result is simplified by 

H - L = H/31’ - Lpz2. 

We derive 

using the identity 

(13) 

!i!!= 
L.? 

-C,(I + P12)sinh ,&y - 2Czsinh /%Y+ (14) 

It is a simple matter to eliminate Cl and C2 between equations (10) and (14). This 

yields 

ti = all U, + al2 V, 

4a 
E = a12 U, + a22 V, 

where 

all = g (1 - P2”) a22 
a 

= y (1 - P22) 
n 

al2 = -$ (/?12z2 - P22 zl) - 1 Aa = z1 - ,8r2zz 

z1 = Pitanh j% 22 = ,&tanh /L 

(15) 

(16) 
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Similarly, we consider the symmetric standing wave such that 

(17) 

This is a standing wave where the axis of the layer remains fixed while the layer 
exhibits a change of thickness of wavenumber 1 along x. We may proceed as for the 
antisymmetric case. However, we need not repeat the calculation. We note that in 
the solution (7), the functions sinh and cash are interchanged. This is also true for 
their derivatives. Hence, the solutions is obtained from the antisymmetric case by 
simply interchanging the functions sinh and cash. This amounts to replacing z1 and 
z2 in (16). respectively, by ,&/tanh j&y = Pl”/zl and ,&/tanh p2 = Pz~/.z~. We obtain 

where 

bll = y (1 - ,G?) 
d 

b22 = $ (1 - p2”) 
s 

b12 = g (2, - 22) - l A, = z2 - ~‘$2~. 

b 

(18) 

Note that the 2 x 2 stiffness matrices of equations (15) and (18) for the antisym- 
metric and symmetric deformation of the layer are symmetric, i.e., the off-diagonal 
terms are equal. Hence, for each case, thereare only three distinct coefficients aij 
and bij. This symmetry is a fundamental property of mechanical impedances of 
linear conservative systems. It is a consequence of the existence of a strain energy. 
In Lagrangian form, the equations of motion are derived from two quadratic forms 
representing the elastic and kinetic energy which lead to reciprocity properties of 
impedance coefficients. 

It is of interest to derive values of aij and bi, for the limiting static case of zero 
frequency ((J = 0). In this case 

PI = p2 = 1 21 = 22. (20) 

Hence, the matrix elements become indeterminate of the type O/O. Their true value 
is obtained by putting 

p1 = 1 - El p2 = 1 - &2 
1 dp 1 Jp 

“‘=sm &2=2?$ (21) 

where cl and EZ are small quantities of the first order. It is a simple matter to expand 
values to the first order in ~1 and ~2. This brings out the common factor w2p/12 which 
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cancels out. By putting 

753 

r=L/H 

A,’ = (1 + r)sinh 2y + 2(1 - r)y 

Ai = (1 + r)sinh 2y - 2(1 - r)y (22) 

we obtain 

all = $ cosh2 y 
a 

~22 = h sinh2 y 
a 

al2 = & sinh’ y - 2 
a 

bll = $ sinh’ y bzz = $ cosh2 y bl2 = : sinh2 y - 2. (23) 
S F s 

For an incompressible solid, we put r = 0 in A,’ and A,‘. This case is immediately 
applicable to a viscous incompressible solid in creeping motion with velocities 
replacing displacements and the viscosity coefficient 17 replacing L. These results 
were applied to problems of folding instability of viscous multi-layered solids under 
compressive stress along the layers (Biot, 1965). 

The characteristic equation for flexural oscillations of a single layer is obtained by 
putting T, = qa = 0 in equation (15). We derive 

alla22 - af2 = 0. (24) 

After cancelling the common factor (zl - p12zz)& this becomes 

4p&tanh ,%y - (1 + P22)2tanh ply = 0. (25) 

For wavelengths, large relative-to-the-thickness ,Bly and p2y are small, and we may 
replace the tanh by the first two terms of its power expansion, i.e., 

tanh ,&y = ,&y - +p13y3 

tanh ,&y = PZV - +/323y3. (26) 

This yields 

QY2[0 + P22)2P12 - 4fiz4] = (1 - ,&“)“. (27) 

For flexural waves whose phase velocity is small relative to dilatational and shear 
waves, we may put PI and /I& equal to (21) where ~1 and ~2 are small. Keeping only 
first order terms and cancelling the common factor w2p/l 2, equation (27) becomes 

lH-L -~ 
3 H 

LhZL4 = w”p. (28) 

Expressing the elastic coefficients in terms of Young’s modulus E and Poisson’s 
ratio Y, (28) is written 

&-$ h”14 = u2ph. 
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This result coincides with the equation of flexural oscillations of thin plates (Ti- 
moshenko, 1927) 

1 E 
-2 y=02phv h3 dv 
121-v dx (30) 

where h is the thickness and u the deflection. 
The case of thin plates using series expansion of tanh as a limiting case was 

discussed in detail earlier in the context of stability under initial stress (Biot, 1965). 
It was shown that the power expansion of tanh must include the first and third 
order terms. 

A similar power expansion of tanh to the third order for the coefficients oij and bij 
for thin layers yields Lagrangian equations of motion with quadratic forms for the 
potential and kinetic energies. 

COMPLETE STIFFNESS MATRIX OF A LAYER 

It was shown (Biot, 1963, 1965) that the stiffness matrix of a layer for standing 
waves which are neither symmetric nor antisymmetric is obtained immediately from 
the values of oij and bij without any additional algebra. We denote by UIV~ rlql the 
values of the displacements and stresses at the top of the layer (y = h/2) and by 
UZ Vznqp the values at the bottom (y = -h/2). By superposing symmetric and 
antisymmetric modes we obtain 

71 = 7, + Ts 

q1 = qa + qs. (31) 

Similarly, 

72 = Ta - Ts 

q2 = -qa + qs. (32) 

We may also write 

Iv, = +( Ul - U2) us = gu, + U2) 

v, = $(V, + V2) v, = *(VI - V2). (33) 

We now substitute the values (15) and (18) of TaqaTsqs into (31) and (32), and in the 
result we then substitute the values (33) of U, V, Us V,. We obtain 

4 2 

Ati Aci -A2 A3 

where 

A1 = *(all + bd A4 = +(a11 - h) 

AZ = +(a12 + bid AS = +(a12 - 612) 

AS = +(a22 + b22) -4~ = +(a22 - h.2). 

(34) 

(35) 
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The stiffness matrix of equation (34) reveals its fundamental mathematical structure 
which was already discovered in earlier work in a more general context (Biot, 1963, 
1965). It is symmetric with respect to the diagonal. This is a consequence of the 
existence of a strain energy. In addition, it contains only six distinct elements. This, 
in turn, is due to the symmetry of the elastic properties with respect to the middle 
plane and the separation into symmetric and antisymmetric modes represented by 
the six elements aij and bij. Note that -72 -qz are given negative signs in order to 
represent forces acting on the material at the bottom face in the direction of the 
displacements lJ2 and V2. 

As also shown earlier (Biot, 1963, 1965), a compact formulation of equation (34) 
without using matrices is obtained by introducing the quadratic form 

I= +A&Y?+ U22) -AJIJIU~ 

+ +A&‘12 + Vz’) + AsV1V2 

+A~(UIVI - U2V2) +Adi71V2 - U2K). 

Equation (34) is then written 

q,=Ll-$ 
1 

-q2= Ll-$ 
2 

(36) 

(37) 

The particular case of a vanishing wavelength or infinite layer thickness is 
obtained by putting y = 0~) in the values of z1 and 22. Consider the case where ,& and 
fi2 are real. Without loss of generality, we may choose ,& and j32 as positive. Hence, 
in this case for y = ~0 

tanh ,&y = 1 tanh ,&y = 1 

21 = p1 z2 = p2. (38) 

Substitution of these values into expressions (16) and (19) yields 

Equation (34) becomes 

[I 42 41 71 

72 
=LL “d’ ,“o”’ _& I all 0 a12 0 0 a12 -a22 0 

“,,, 

I[ 

; 

Ul V2 2 1 . 

(39) 

(40) 

Hence, the coupling between the two faces of the layer disappears. The upper 2 x 
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2 matrix yields the case of the lower half-space, and the lower 2 x 2 matrix that of 
the upper half-space. The case where pi or & or both are imaginary may be 
considered as a limiting case by introducing a vanishingly small damping in the 
matrices. In this case, choosing ,& and & to be in the first quadrant, equations (39) 
and (40) remain valid. It is quite simple of course to solve the problem directly for 
the half-space. Results confirm the values (39) and yield equation (40). 

Recurrence equations for a multi-layered system are readily obtained by a general 
procedure (Biot, 1963, 1965) using the foregoing results. We denote Al’ Azi Agi Adi 
AsC As’ the elements of the rigidity matrix of the ith layer. Correspondingly, the 
displacements at the upper face of this layer are denoted by Ui Vi and at the bottom 
face by Ui+l V,+i. The latter are equal to the upper face displacements of the (i + 
l)th layer immediately below. Using expression (37) for the stresses acting on the 
layers i and i + 1, we equate the stresses acting at their common interface. This 
yields 

(41) 

with the quadratic form 

These are recurrence equations for the two displacements at three successive 
interfaces. Equations for end conditions at top and bottom of the multi-layered 
system, whether free or coupled to a half-space, are easily added. They have been 
discussed earlier in a different context (Biot, 1963,1965). 

Further formal simplification of the recurrence equation is obtained by introducing 
the quadratic form 

9 = C Ljlj (43) 

Equation (41) then becomes 

as 
0 

a9 -= 
au -= aVi 

0. (44) 

This is a variational principle 

SY= 0. (45) 

Top and bottom boundary conditions with adjacent half-spaces are taken into 
account by adding suitable terms to JJ as discussed earlier (Biot, 1963, 1965). 

When using the power expansion in w2 of the coefficients aGb,j, the variational 
principle (45) yields immediately the typical form of the characteristic value problem 



GENERALIZED RIGIDITY MATRICES FOR MULTI-LAYERED MEDIA 757 

of linear conservative mechanics with quadratic forms in Vi and V, for the potential 
and kinetic energies and the corresponding Lagrangian equations. 

The transfer matrices of the Thomson-Haskell method have been derived in 
terms of the coefficients ati& (Biot, 1963, 1965). The results remain valid in the 
more general case with initial and couple stresses and for orthotropic layers as 
explained below using appropriate values of czg and b,- for each case. 

ORTHOTROPIC LAYERS 

The foregoing results for isotropic materials have been obtained directly. The 
same simple derivation is applicable to orthotropic layers with directions of sym- 
metry parallel and normal to the faces. This more general case was also discussed 
in detail earlier in the context of an initially stressed medium. The existence of a 
strain energy and the symmetry with respect to the middle plane of the layer leads 
to a rigidity matrix with exactly the same mathematical structure as in equation 
(34) with six distinct coefficients. Only the values of a~ and bq are different. For an 
orthotropic material in plane strain, the stress-strain relations are 

ch = Gerx + G2eyy 

a,, = Cl2 exx + C22eyy 

a,, = ZLe,. 

Substitution in the dynamical equation (3) yields 

Cl1 
a% 

$+L$+(C2+L)- 
axay 

+ &u = 0 

i?U 
Cz$+L$+(C2+L)+- 

axay 
+w2pu=o. 

(46) 

(47) 

In this case, we cannot decouple the dilatational and shear waves. For the antisym- 
metric case, we write a solution of the form (6) with two undetermined constants 
C1 C2 and roots pl,& of the biquadratic characteristic equation 

,8” - 2mp" + k2 = 0 (48) 

where 

2m = LC22 
-[Qc22-L(2c,,+$)-C:2] 

k2 =_.& 
22 

a=c,,-q. 

The values of &” and &” are 

(49) 

PI” = m + Jm” - k2 

/Ia” = m - x!I?Ti? (50) 
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Proceeding as in the case of isotropy, we derive relations (15) with the coefficients 

A, = (n - Lj3l”)z2 - (Q - L/32+1. (51) 

Values for the symmetric mode of the layer is obtained by interchanging the sinh 
and cash functions. This is equivalent to replacing in (51) z1 and 22, respectively by 
l/zl’ and l/z2’ with 

zl’ = L tanh ,& y 
Pl 

~2’ = A tanh j&y. 
P2 

(52) 

We obtain 

52 
bll = - (pz” - p12)zl’zz’ 

As 
b22 = F (p2” - p,“) 

b 

1 
b12 = - [(a + C&‘)zz’ - 

A,Y 
(a + C&“)z,‘] 

A, = (n - Lp12)zl’ - (a - Lp2”)zz’. (53) 

The values of a, and b, given by equations (51) and (53) are equivalent to those 
obtained by putting equal to zero the initial stress in the more general results 
derived earlier. With these values of aij and bzj, the same equations (34) and (35) 
remain valid as well (44) with the quadratic form 

where Li now denotes the shear modulus of the orthotropic material. Proceeding as 
follows, it is easily verified that these results lead to the values obtained above for 
the isotropic material. Comparing the stress-strain relations (2) and (46), we see 
that for the isotropic material 

C,l = Cz= H Cl2 = H - 2L. (55) 

With these values, we obtain for the coefficients of the characteristic equation (48) 

Hence, the roots are 

p,” = 1 - 2 p2” = 1 - $ 

(56) 

(57) 
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In the three-dimensional solution (62), we may also write 

u = -iU 
a 

- exp ih’ 
. a 

wx) 
cry = --br - exp ilx’ 

wx) 

a . a 
w- -iU- 

au.4 
exp ilx’ ~zy = -vr - exp ik’. 

a(k) 

By Fourier analysis, this yields a large class of the three-dimensional solutions. For 
example, we may multiply each solution (62) by f(& S) and integrate over t and S: In 
particular, the stress a,, becomes 

BE, SMWexp i(& + l.4 d5 dS: (65) 

By double Fourier transform (Sneddon, 1951), we choose f(& {) to yield any arbitrary 
distribution of a,, of the normal stress at the surface of a multi-layered system with 
zero tangential stress (T = 0) at this surface. The values of the displacements u, w, 
and v at any interface are then obtained in the form (62) by solving the recurrence 
relations (44) for Ui and Vi as obtained for the plane-strain solution. In particular 
we may take the average value of the solution (62) for all orientations by simply 
integrating it with respect to 8 from 0 to 2m with T = 0. The solution in this case is 
axially symmetric and u becomes the radial displacement ur. All directions being 
equivalent, we put z = 0 and replace x by the radial distance T from the axis in 
expressions (62). The integration yields 

I 
2n 

4 
a,, = - 

2m 0 

exp i(Zr cos 0) dt? 

exp i (lr cos 8) dtl 

exp i(lr cos 8) de. 

These values are (Whittaker and Watson, 1927) 

uyy = qJo(lr) 

u = VJo(Zr) 

u,. = -Uz = UJl(Zr) 

(66) 

where Jo and J1 are the Bessel functions of the first kind of order zero and one. The 
case of imposed normal forces at any interface may be similarly solved in three 
dimensions for axially symmetric distribution using Hankel transforms (Sneddon, 
1951). 

Instead of using distributions such as (65), we may superpose two-dimensional 
solutions of different orientations but same wavenumber 1. This yields various 
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triangular, rectangular, and hexagonal patterns. The common wavenumber I corre- 
sponds to the concept of intrinsic wavelength (Biot, 1966, 1972b, 1974) of three- 
dimensional solutions. The resonant frequency of the pattern is the same as for the 
plane strain component mode of the same intrinsic wavelength. 

A complete solution should also consider shear waves for which three-dimensional 
solutions are obtained by a similar process of superposition. Note that in the 
foregoing solution (64), the tangential stresses a,, and CJ*, are expressed as a gradients 
in the xz plane and may therefore not be chosen arbitrarily on a particular surface. 
The case of pure shear waves completes the solution by adding in the xz plane 
tangential stresses represented as a,, = -&/~/&e and uzy = &/ax. 

EFFECT OF INITIAL STRESSES, GRAVITY, AND COUPLE STRESSES 

The theory of multi-layered media was initially developed in detail in the context 
of initial stresses (Biot, 1963, 1965). For transverse isotropy with principal initial 
stresses along the directions of symmetry, the stress-strain relations retain the same 
form as (46) except that the stresses are now suitably defined incremental stresses. 
The initial stress is made up of a term -pn which is hydrostatic and a horizontal 
principal stress -P - pH the same in all horizontal directions. The coefficients Uij 
and bij remain formally the same as (51) and (53), and the initial deviatoric stress 
-P appears only in the values of pi and /32 through the characteristic equation (48) 
where 

2m=&[w22-L(2C12+P+~) -c:,] 
$2 

k2 = LCZZ 
- L-P-$ ( 1 . (68) 

The value of P may be different in each layer. The buoyancy effect of gravity is 
obtained by writing the recurrence equations with additional terms taking this effect 
into account. 

w 
-0 avi- , -++ 9)=0 

where 5 is given by (54) and 

3= $& (Pi+1 - pi)gvZ+,. (70) 
I 

We denote by pi the density of the ith layer, and g is the acceleration of gravity. 
Again, this result translates into the variational principle 

qr+ 9) = 0. (71) 

.For an incompressible material, these equations express rigorously the effect of 
gravity forces. If this is not the case, we must take into account an additional 
buoyancy effect due to the change of volume. However, this effect is usually 
negligible in practice. 

If the layers themselves are constituted by thin laminations of hard and soft 
sheets, a moment per unit area may appear due to the bending rigidity of the 
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laminations. This moment is proportional to the local curvature and is written as 
(Biot, 1972a) 

We have shown that this effect may be included very simply replacing P by P - b12 
in the values (68). This property was referred to as the couple stress analogy (Biot, 
1974). The superposition of plane-strain modes to derive three-dimensional solutions 
as previously described is, of course, valid for the more general problem with initial 
and couple stresses. In particular, in problems of instability, we have shown how 
these plane-strain solutions along directions at 120” yield a pattern of hexagonal 
cells of the Benard type. 

VISCOELASTIC LAYERS, LINEAR THERMODYNAMICS, AND BASIC RECIPROCITY 
RELATIONS 

The mechanics of viscoelastic media initially in mechanical and thermodynamic 
equilibrium, whether initially stressed or not, may be considered from the standpoint 
of linear thermodynamics. Small perturbations obey Onsager’s reciprocity relations 
and are governed by linear Lagrangian equations derived from a kinetic and potential 
energy and a dissipation function. Transfer impedances of such a system obey 
fundamental reciprocity relations similar to those of a black box of electric circuits 
with inductance resistance and capacitance. The internal behavior is represented by 
internal coordinates which determine the frequency dependence and heredity prop- 
erties of the complex impedances of the outlets. In viscoelasticity, this leads to a 
correspondence principle (Biot, 1965) whereby the complex coefficients of the stress- 
strain relations exhibit the same basic symmetry and reciprocity properties as the 
elastic moduli. Hence, the four moduli of the stress-strain relations (46) become 
complex functions of the frequency with the same equality of the off-diagonal terms 
in the matrix. Also, the type of frequency dependance is determined by the 
fundamental thermodynamics. This leads to a 4 x 4 impedance matrix for the 
viscoelastic layer as well as complex coefficients aij and bij with exactly the same 
reciprocity relations and mathematical structure as the rigidity matrix of equation 
(34). A detailed discussion of these fundamental properties as well as a large number 
of references will be found in the authors monograph (Biot, 1965). In stability 
problems, iw is replaced by p. A fundamental theorem states that the characteristic 
equation for unstable solutions always yields real and positive values of p. 

CONCLUSIONS 

It has been shown how stiffness matrices for multi-layered media may be derived 
by a very simple and direct procedure for isotropic and orthotropic layers. As a 
consequence of the procedure, the matrices obtained are real, symmetric, and 
dimensionless. They contain only six simple distinct elements leading to simplified 
programming. They also provide physical insight and their structure belongs to a 
universal type which follows from fundamental principles of linear conservative 
mechanics. Decoupling of the two faces of a layer for large thickness to wavelength 
ratio becomes self-evident leading to half-space matrices. General three-dimensional 
solutions for transverse isotropy are immediate by a process of superposition of 
plane strain modes with the same plane-strain matrices. The matrices are valid for 
viscoelastic materials as a consequence of fundamental principles of linear thermo- 
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dynamics. The procedure followed here is the same as developed many years ago by 
the author for initially stressed multi-layered media with anisotropy and couple 
stresses, and it is shown how the earlier results lead explicitly to those obtained here 
as a particular case. 
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