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Abstract 
This paper presents a combined theoretical and ex- 
perimental investigation of fracture penetration through 
an interface. The results have application to hydraulic- 
fracture containment in sandstone or limestone reservoir 
strata bounded by shale layers. Several simplifying 
assumptions and approximations are made. We assume 
that the interface separates dissimilar but adhering 
materials that are elastic to first order. We consider only 
differences in material properties and take stresses to be 
locally uniform. Approximations are made that reduce 
the fourth-order equation of plane strain elasticity to the 
second-order Laplace equation. Crack shape is taken to 
be sinusoidal and fluid leakoff is ignored. 

Additional simplifying assumptions are made about 
the shape of the crack tip as it passes through the inter- 
face. Using a virtual work analysis, we derive a relation 
for internal fluid pressure required to extend the crack 
through the interface. This pressure is related to the 
equilibrium pressure needed to hold the crack barely 
open. A simple relation is obtained involving only the 
shear modulus and surface energy of the materials on 
either side of the interface. 

The theory was tested in laboratory experiments with 
Plexiglas TM/resin bonds. Test blocks of several con- 
figurations were used with various kinds of external 
loading. Cracks were initiated by applying grease 
pressure in thin notches. Pressures required to hold 
cracks in equilibrium were compared with those required 
to penetrate interfaces. Results were consistent with the 
theory within limits of precision in measuring surface 
energy. We conclude that the theory explains field obser- 
vations of containment in a number of reservoirs that 
have been fractured hydrualically. However, practical 
value is limited by inability to estimate surface energies 
from logging or other wellbore data. 
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Introduction 
Fracture penetration through an interface is of fun- 
damental importance in hydraulic fracturing operations. 
The question of how far a fracture grows vertically dur- 
ing a fracturing treatment is basic to all design and op- 
timization considerations. In a fairly homogeneous for- 
mation, such as granite, unlimited vertical growth might 
be expected. This would lead to a penny-shaped crack ’ 
of the kind expected for horizontal fractures. In layered, 
sedimentary rock, vertical growth requires penetration 
through interfaces between layers. If penetration is 
prevented at interfaces near the injection layer, the frac- 
ture will be contained and constant height thereafter. 

Constant-height fracture geometries have been as- 
sumed in most theories of fracture propagation. 2-6 Field 
results, notably temperature logs, have long indicated 
that this constant-height assumption is reasonable. Many 
of these logs can be explained only by the existence of 
some kind of barriers to vertical fracture propagation. 

These considerations introduce the problem of crack 
penetration through an interface in a layered medium. 
This problem has received considerable attention 
already. It has been treated for both ideally elastic 
laminar materials and layered rock materials. Several 
studies have addressed the problem of a crack ap- 

pr;;;!$$ 
an interface in a bonded-layer elastic 

” . These works have focused mainly on the 
nature of the singularity at the crack tip as it approaches 
the interface. The methods used have been based on the 
stress intensity concept introduced by Irwin. l2 A similar 
approach has been used to treat the penetration problem 
in rock layers. Other studies have dealt with the frac- 
ture containment problem in reservoir rock by using 
the stress-intensity factor to evaluate penetration 
criteria. 13-15 

Our approach is much different. We use linear elastici- 
ty theory applied along the lines developed by Griffith I6 
for homogeneous materials. By introducing simplifying 
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Fig. l-Practical aspect of fracture penetration through an 
interface. 

assumptions and approximations, we avoid the singulari- 
ty problem and other difficulties associated with a 
heterogeneous medium. In this way we obtain a simple 
relation for predicting whether crack penetration will oc- 
cur between bonded layers. 

This approximate theory cannot serve the same pur- 
pose as the exact theory for a homogeneous medium. We 
have restricted our use of it to investigation of 
mechanical property differences only. We use relations 
derived from it to predict, in an approximate way, 
whether crack penetration will occur through an interface 
separating materials of dissimilar mechanical properties. 

Recent investigations have indicated that stress dif- 
ferences between earth layers are an important source of 
fracture containment. l7 We do not address this problem 
here. Our approximate theory is not adequate to handle 
the problem of stress differences between layers. In our 
treatment the stress is taken to be equal in all layers, and, 
therefore, it does not appear in the results. 

The various assumptions and approximations intro- 
duced into our theory must be justified. We have done 
this by means of direct experimental tests. The simple 
results predicted by our approximate’ theory can be 
definitively tested by laboratory experiments. We have 
devised tests using bonded Plexiglas and resin models to 
represent interfaces of the type considered in the theory. 
Laboratory tests of this kind have provided at least a 
qualitative verification of the approximate theory. 
Earlier experimental tests are also consistent with our 
theoretical predictions. ** 

Theory 

We consider the practical field problem illustrated in 
Fig. 1. A hydraulic fracturing treatment is carried out 
through perforations or other means of fluid entry in a 
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selected layer of reservoir rock. This layer, labeled 
Medium 1, is typically a brittle sandstone or limestone. 
As the fracture propagates both laterally and vertically, it 
approaches overlying and underlying interfaces with 
Medium 2, which has mechanical properties different 
from Medium 1. In typical cases, Medium 2 could be a 
shale. Using the coordinate system shown in Fig. 1, we 
take the boundaries between Media 1 and 2 to lie in the 
y-z plane. We wish to know what conditions are required 
for penetration of the crack through the interface. 

In our treatment, Media 1 and 2 are both taken to be 
orthotropic elastic materials with elastic symmetry about 
the x and y axes. We ignore leakoff of fluid through the 
crack faces. We also take fluid pressure in the crack to be 
uniform, ignoring the small variations that would result 
from fluid flow during crack propagation. 

Approximate Elasticity Theory 

We consider the plane-strain problem in the x-y plane. 
The displacement vector field is denoted by u and v with 
strain components 

au 
e,=-, 

ax 

av 
eyy =-, 

ay 
and 

. . . . . . . . . . . . . . . . .(l) 

The corresponding stress components are denoted by 
uxr, uyy , and uXY, respectively. 

To reduce the problem to one that is tractable, we in- 
troduce certain approximations in the plane-strain 
analysis. We first assume that the stress produced by the 
crack in the direction of propagation is negligible-that 
is, urr ~0. We also assume, along the same line of 
reasoning, that au/ay4av/ax. Appendix A shows that 
these approximations reduce the fourth-order biharmonic 
equation of classical theory for plane strain to the 
Laplace equation, 

a2v a2v 
2+7=0. 

aq 
. . . . . . . . . . . . . . . . . . . . . . . . ...(2) 

This allows us to represent the field v by a harmonic 
potential function 4 as 

v=&K, 7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(3) 

The stresses in terms of 4 are then 

y,=2&$ . . . . . . . . . . . . . . . . . . . . . . . . . . . 

and 

. . . . . . . . . . . . . . . . . . . . . . . . . . (5) 
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Fig. 2-Half-space representation of the crack. 

Eqs. 2 through 5 provide the basis of an approximate 
theory for treating the crack-penetration problem. As a 
test of this theory, we have applied it in Appendix B to 
the classical Griffith crack problem i6 illustrated in Fig. 
2. In this case, it gives exact agreement with the classical 
result when the medium is incompressible (i.e., v = l/2). 
For v < l/2 the result is only approximate, with the error 
increasing as v decreases. 

Sinusoidal Approximation 
Before treating the crack-penetration problem, we deter- 
mine the conditions for crack propagation in Medium 1, 
which is taken to be isotropic. We consider a solution 4, 
satisfying Eq. 2, which is sinusoidal along X, and given 

by 

+=Be-e” cos 0. . . . . . . . . . . . . . . . . . . . . . . . .(6) 

This amounts to assuming a crack shape that is 
sinusoidal rather than elliptical. The crack length 2c is 
taken to be the half wavelength of this sinusoidal shape 
as shown in Fig. 3; that is, 

I?=$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7) 

A uniform pressurep I is now applied inside the crack. 
The sinusoidal solution (Eq. 6) can be used with the 
principle of virtual work to determine the approximate 
pressure p 1 required to extend the crack just a bit. The 
procedure is outlined in Appendix C. The approximate 
extension pressure obtained in this way is 

PI*= gm, . . . . . . . . . . . . . . . . . . . (8) 

where S, is the energy required to produce a unit area of 
crack surface in Medium 1. 

Appendix C shows that a correction factor of 1.23 is 
required to bring this result into agreement with the one 
derived by Sneddon and Elliott I9 for the classical Grif- 
fith problem. 

Penetration Through an Interface 
We consider now the problem of crack penetration as il- 
lustrated in Fig. 1. A crack of height 2c is present in the 
perforated interval with elastic constants N 1 and G 1. 
The upper and lower tips of the crack are located at the 
two parallel interfaces normal to the crack and separated 
by the distance 2~. The interfaces form boundaries with 
an outer material with elastic constants N2 and G2. Our 
purpose is to derive the conditions that determine 
whether the crack will propagate across the interface. 

We locate the origin at one of the vertical tips of the 
crack and assume a sinusoidal shape 

v=BsinPx, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (9) 

with P given by Eq. 7. We assume that, across 2c, this 
sinusoidal shape is still preserved after the crack 
penetrates the interface and extends into Medium 2 by a 
small amount. 

Consider a small penetration into Medium 2 by a 
distance b as shown in Fig. 4. Although the crack across 
2c is still sinusoidal, it has a new value of P that must be 
determined. Eq. 9 corresponds to a function 4 given by 

+=Be-eV sin t?x. . . . , . . . . . . . . . . . . . . . . . . . . . (10) 

t 

Y 

C C 
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X 

Fig. J-Sinusoidal crack in the half space. 
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Fig. 4-Penetration of the crack across an interface S. 

Also at the interface x=2c, the shear stress given by Eq. 
5 is 

u,=G,B&?c~ cos 2!c. . . . . . . . . . . . . . . . . . .(ll) 

Along this interface, the displacement is 

v=BeeP’J sin 2&?c. . . . . . . , . . . . . . . . . . . . . . . . . (12) 

We now introduce another approximation. We replace 
Medium 2 by a layer of the same material of thickness b 
and assume that this layer adheres to Medium 1 at x=2c 
and to a rigid base at x=2c+b. The shear ‘stress in this 
layer is given by 

eXY = -G,(v/b) . . . . . . . . . . . . . . . . . . . . . . . . . .(13) 

or 

UXY 
= -G2ae-e’r sin 2ec. . . . . . . . . . . . . . . . . . (14) 

Equating the shear stresses from Eqs. 11 and 14 gives 

tan 2fc= -5tb. 
G2 

. . . . . . . . . . . . . . . . . . . . . . . . . . (15) 

Since b is small, 

20c=a-Z, . . . . . . . . . . . . . . . . . . . . . . . . . . 

where Z is also small. This reduces Eq. 15 to 

z= 
nbG, 
- 
2cG2 ’ 

. . . . . . . . . . . . . . . . . . . . . . . . . . 

and gives the new value for L’ in terms of b as 

I=&~). . . . . . . . . . . . . . . . . . . 
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. . . 

. . . 

. (16) 

(18) 

If a fluid pressure p2 is applied inside the crack, the 
condition for crack penetration can be determined in 
terms of b from the energy balance equation 

p2g66-$&b=S2 6b. . . . . . . . . . . . . . . . . . (19) 

Expressions for the crack volume, V, and the elastic 
energy, W, are derived in Appendix D. V is given by 

v= 
32c2p2 2 

lGJN,c, (1+r,“,‘2) ’ 
. . . . . . . . . . . . . 

and W by 

w= 
16c2P2 2 2 

asa C+$> . 
. . . . . . . . . . . 

Using Eqs. 20 and 21 in Eq. 19 gives 

p22;:::iT;2) ($). . . . . . . . . . . . . 

Since b is small at the instant of penetration, 

(20) 

(21) 

(22) 

bGt 
-91 
2cG2 

and the penetration pressure is 

P22= 
S2n3a 

. . . , . . . . . . . . . (23) 
16~ 

Eq. 23 can be compared with Eq. 8 for PI, the 
pressure required to propagate the crack in Medium 1. 
The ratio is 

. . . . . . . . . . . . . . . . . . . . . . . . . . . (24) 
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Eq. 24 gives the condition required for penetration of 
the crack through the interface. If 

S,G*<S,G*, . . . . . . . . . . . . . . . . . . . . . . . . . . . (25) 

penetration will occur. If 

S2G2>S,G,, . . . . . . . . . . . . . . . . . . . . . . . . . . . (26) 

the crack will be confined to Medium 1. In this case, 
penetration will occur only if the pressure is increased by 
the ratio given by Eq. 24. 

The absolute pressures given by Eqs. 8 and 23 are ap- 
proximate because of the many simplifications required 
in the theory. However, correction factors for both equa- 
tions should be about the same. Therefore, errors in the 
ratio should be small. 

An additional result that tends to confirm the analysis 
is obtained by letting the interface disappear. If we take 
S2 =Sr and G2 =Gt , Eq. 22 reduces to 

PI*= 
S,a3JN,G, 

16(c+b/2) 

This is the same result obtained by replacing c with 
c+bL2 in Eq. 8. 

Experimental Verification 
The results predicted by Eqs. 24 through 26 have been 
tested by means of simple lab experiments. One type of 
experiment is illustrated in Fig. 5. Blocks made of bond- 
ed dissimilar materials were prepared in the form shown. 
The materials used were Plexiglas and a hard brittle resin 
with the trade name Stycast. 

Blocks were made from either Plexiglas or resin as the 
inner Medium 1. When Plexiglas was used, the outer 
Stycast was bonded to a 2.5~ X4X4-in. [6.35 x 10 x 
lo-cm] milled Plexiglas block by use of a form for pour- 
ing the initially mixed resin and hardener. After setting 
up, the resin faces were milled to the final compound 
blockdimensions, 2.5~6~7 in. [6.35 X 15.24 X 17.78 
cm]. When the materials were reversed, the blocks were 
made by milling the outer Plexiglas part and filling in the 
inner Stycast by pouring the resin into a form. The resin 
faces were then milled to the proper dimensions after set- 
ting up. 

The inner material was notched for fracture initiation. 
The notch was a slot 0.010 in. [0.254 cm] wide x0.30 
in. [0.762 cm] deep x 2.5 in. [6.35 cm] long cut with a 
slitting saw. It was centered in the 2.5X4-in. 
[6.35 x lo-cm] face parallel to the 4-in. [lo-cm] edge as 
shown in Fig. 5. The walls of this notch contained small 
brass capacitor plates for use in measuring crack width 
during propagation. These plates were formed by initial- 
ly milling a recess 0.55 in. [1.40 cm] in diameter by 0.25 
in. [0.635 cm] deep in the center of the face. A 
0.50X0.25-in. [1.27x0.635-cm] brass disk was epox- 
ied into this recess. The solid disk was cut in half by the 
slitting saw during the notch-cutting operation. The half 
disks served as plates of a capacitor that was connected 
by soldered wire leads to a capacitance bridge. The 
bridge measurements gave the spacing between the 
plates during crack growth, which served as a measure of 
crack width at the crack entrance. 

The Plexiglas/resin block was mounted in a servo- 
controlled hydraulic press to apply a small stress on the 
end face containing the notch and its opposite face. A 
second hydraulic press was positioned inside the posts of 
the servo press to apply a small stress to the other pair of 
end faces perpendicular to the notch. No stress was ap- 
plied to the remaining side faces, which were parallel to 
the plane of the notch. These conditions favored propa- 
gation of the crack in the plane of the notch. 

The press platen bearing against the notched face in- 
cluded an injection system for injecting grease into the 
slot. This platen contained an O-ring groove that was 
rectangular with rounded comers. A standard O-ring was 
used in this groove to form a seal with the milled sample 
block face. This seal extended past the Plexiglas/resin 
interface far enough to maintain sealing during crack 
propagation in the Plexiglas. 

Grease was injected into the notch by means of a 
modified Ruska pump connected to the injection system 
through stainless-steel high-pressure tubing. The crack 
width was monitored by recording an error signal from 
the capacitance bridge. Details of this technique are 
given elsewhere. 2o The crack length was observed 
visually and recorded in some cases by a motion picture 
camera. The injection pressure was measured by a 
transducer mounted on the injection plate. 

This arrangement provides a simple experimental 
model for testing the theoretical predictions of the 
preceding section. A test of Eqs. 24 through 26 required 
values of the shear modulus, G, and surface energy, S, 
for the Plexiglas and resin materials. These quantities 
were determined by established methods. 

The shear modulus was determined from stress/strain 
data by strain-gauge techniques. Cylinders of l-in. 
[2.54-cm] diameter and 2-in. [5.08-cm] length were 
machined from blocks of the Plexiglas and resin 
materials used in the crack propagation experiments. 
Standard SR4-type 120-Q gauges were bonded to the sur- 
face of each cylinder with Eastman 910TM adhesive. We 
used prefabricated right-angle patterns for simultaneous 
measurement of longitudinal and circumferential strains. 
Gauge patterns were mounted on opposite faces centered 
on the cylinder length. Strains were measured with 
Daytronic Corp. Type 90 input modules in transducer 
conditioner panels. An aluminum cylinder was used as a 
standard to check gauging procedures, sensitivity set- 
tings, etc. 

The stress/strain data were obtained by applying step 
loads of approximately 250, 500, and 1,000 lbm [ 113, 
218, and 454 kg] to each cylinder. Over this range the 
longitudinal and circumferential strains were linear with 
stress. However, under each step-load application, the 
strain responses for both Plexiglas and resin cylinders 
were characteristic of slightly viscoelastic materials. The 
aluminum standard showed purely elastic response under 
the same conditions. 

The elastic constants were obtained from the relations 
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Fig. Z-Experimental test of crack penetration across an Fig. B-Experimental arrangement for determining surface 
interface. energy. 

and 

E 
G=- 2(1 +v). . . 1 . . . . . . . . . . . . . . . . . . . . . . (27) 

Results for the Plexiglas and resin materials are given in 
Table 1. These results are averages of five sets of 
measurements with standard deviations as given. 

The surface energies were determined by a method 
described by Gilman. *’ This is only one of several 
methods described in the literature for measuring surface 
energy. 22-24 We chose it over others because it is simple 
and direct and, for our purposes, gave acceptable 
reproducibility of results. 

Fig. 6 illustrates our experimental arrangement. 
Cleavage bars with the indicated dimensions were milled 
from the Plexiglas and resin blocks used in the fracturing 
experiments of Fig. 5. A servo-controlled hydraulic 
press was used to load the bars in tension. Pins mounted 
in the end holes were connected through swivels between 
the movable ram and a load cell mounted on the press 
frame. The ram was moved at constant rate by using a 
ramp-controlled linear variable displacement transformer 
(LVDT) as the sensor for the servo system. The same 
LVDT was used to record displacement, 6. 

A sharp blade was used to cut a notch in the 0.125-in.- 
[0.3175-cm-] wide face in which crack growth started. A 
tensile load T was applied at a rate of 300 to 500 g/s until 
cleavage of the bar began. The load was then immediate- 
ly reduced to zero. This usually produced an initial crack 
‘/2 to 1 in. [ 1 to 2 cm] long corresponding to L = 1% to 2 
in. [4 to 5 cm]. This L value was measured and the ten- 
sile load was again applied at the same rate as before. 
The tensile load at which crack growth started a second 
time was determined and recorded as F. These values of 
F and L were used with the Gilman equation, *’ 

6F2 L* 
s= yw2 h3 . . . . . . . . . . . . . . . . . . . . . . . . . . . (28) 

In resin samples, the appropriate value of F was well 
defined as illustrated in Fig. 7a. The second loading of 
the initial crack produced a sharp break in T that usually 
propagated the crack to the end of the bar. In Plexiglas 
samples, F was less well defined because of a tendency 
of the crack to grow out of the slotted plane of width w. 
The cause is not clear but may be associated with 
residual strains induced during fabrication. Typically, 
after departing from the slot the crack traveled slowly 
over a curved surface and bent back into the slotted 
plane, usually over a distance of % to 1 in. [ 1 to 2 cm]. 
This deviation produced results like those shown in 
Fig. 7b. 

The crack growth outside the slotted plane clearly re- 
quired higher tensile forces than growth in the plane. 
However, this presumably would be of little conse- 
quence if the initial break in F occurred while the crack 
was in the proper plane. We rejected all measurements 
where this was clearly not the case; nevertheless, our 
results were probably influenced by this effect in most 
measurements. Thus, F values for Plexiglas are likely to 
be too large, on the average, and surface energies in er- 
ror on the high side. 

The values for Y in Eq. 26 were determined from 
three-point bending measurements on bars of the resin 
and Plexiglas materials. These values were found to be 
in good agreement with E values from strain-gauge 
measurements. 

Table 1 gives deflection data from repeated 
measurements and the surface energies computed from 
them using Eq. 28. Standard deviations in the results are 
also given. The surface energy of the resin is con- 
siderably larger than that of Plexiglas. However, the 
shear moduli are, unfortunately, about the same. 
Therefore, while experiments with these materials pro- 
vide a good test of surface energy effects, they give little 
information about sensitivity to shear modulus. 

Applying the results of Table 1 to the experiment of 
Fig. 5 for the case where Medium 1 was Plexiglas and 
Medium 2 was resin, we have 

to compute the surface energy S. &&=1.54 S,G, 
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TABLE l-ELASTIC CONSTANT AND SURFACE ENERGY DATA 
FOR PLEXIGLAS AND RESIN MATERIALS USED IN FRACTURE 

PENETRATION EXPERIMENTS 

Material 

Plexiglas 
Resin 

E 
(Pax 10’) v (PaxGIOg) 

3.01 f 0.01 0.341 1.12 +0.01 2.78 f 0.37 
2.69 f 0.01 0.359 0.986 + 0.002 4.85 + 0.36 

In this case our theory predicts that a crack initiated in 
the Plexiglas and propagated at a slow rate should stop at 
the resin interface and remain stationary until the 
pressure has increased by the ratio 

E=J1.54=1.24. 
PI 

At the pressure ~2, breakthrough should occur into the 
resin. 

To test these predictions, we conducted fracturing tests 
in several of the models of Fig. 5 with Plexiglas as 
Medium 1. Results from a typical experiment are 
presented in Fig. 8. Here we show crack width and injec- 
tion pressure, plotted as a function of time, at a grease 
injection rate of 0.5 mL/min [0.5 cm3/min]. The times 
labeled tl . . . t5 correspond to the crack propagation 
profiles sketched in Fig. 5. 

0 20 40 60 0 20 40 60 80 100 120 

TIME IN SECONDS 

, 
(b) 

16 

Qualitatively, the events in Fig. 8 are in striking agree- 
ment with theoretical predictions. As shown in Fig. 5, 
following initiation, the crack grew both laterally and 
vertically through time t3 to reach the resin interfaces on 
each of the Plexiglas faces. During this period, the crack 
width grew slightly, and the injection pressure declined 
slowly. 

At t3, the injection pressure had become almost con- 
stant at a value we call p ,. Since crack growth was so 
slow, p 1 is only a little higher than the static pressure of 
Eq. 8 required to extend the crack a fraction. 

Following t3, the crack moved to fill out the square 
profile of the Plexiglas and then remained stationary at 
the interface. At this time the injection pressure began to 
increase and the crack width grew at a much higher rate. 
At t5, after the injection pressure had more than dou- 
bled, the crack broke through the interface. 

TIME IN SECONDS 

Fig. 7-Load-deflection curves for typical surface energy 
determinations in (a) resin, (b) Plexiglas. 

On a quantitative basis, the p2 /p I ratio is considerably 
larger than predicted. The average for all measurements 
was 2.0. However, considering the many approxima- 
tions in the theory and the less-than-ideal nature of the 
experiments, this is not surprising. The theory is derived 
for plane strain, whereas the experiments produced a 3D 
crack. In the theory, we assume ideal elastic behavior, 
but the Plexiglas and resin materials are slightly 
viscoelastic. The theory is exact only for incompressible 
materials (i.e., for v = l/2). In the experimental materials 
we had v = 0.35. Our measurements of S for Plexiglas 
and for the static pressure p 1 are both considered to be in 
error on the high side, consistent with the discrepancy 
here. 

4000 
,eCRACK INITIATION nl) 

Additional experiments were conducted by reversing 
the materials so that the crack was initiated in the resin 
that served as Medium 1. In this case, the crack propa- 
gated through the interface into the Plexiglas with almost 
no delay or pressure increase as predicted. 

TIME-MINUTES 

Fig. 8-Experimental data obtained in a test with the arrange- 
ment of Fig. 6 using Plexiglas as Medium 1 and resin 
as Medium 2. 
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FLUID INJECTION 

END STRESS 

Fig. 9-Experimental arrangement for testing fracture con- 
tainment with free lateral crack extension. 

A second type of experiment using the same Plexiglas 
and resin materials was conducted with the arrangement 
shown in Fig. 9. To make the model illustrated here, a 
Plexiglas plate 2 in. [5.1 cm] thick and 30 in. [76.2 cm] 
along each edge was bonded to resin layers 2 in. [5.1 
cm] thick. A steel tube was epoxied into a hole drilled 
through the center of the upper resin layer 0.75 in. [ 1.9 
cm] into the Plexiglas. A hole 0.125 in. [0.3175 cm] in 
diameter was drilled past the tube into the Plexiglas to 
within 0.75 in. [1.9 cm] of the opposite resin face. This 
layered block was loaded in a hydraulic press between 
steel plates bearing against the 30x30-in. 
[76.2x76.2-cm] resin faces. A stress of a few psi was 

-applied to these faces. Grease was injected into the 
borehole at constant rate. This produced initiation of a 
vertical crack in the Plexiglas at the borehole. The crack 
grew both laterally and vertically until it reached the 
resin interfaces. At this point the vertical extension 
stopped and the crack grew laterally, as indicated in Fig. 
9, to the edges of the Plexiglas plate. This plastic model 
is representative of the mode of propagation that can be 
expected in many reservoir intervals bounded by shales 
or other lithologically different materials. 

These experimental results confirm the most important 
basic features of the theory. They show that mechanical 
property differences alone are sufficient to prevent frac- 
ture penetration through a bonded interface provided 
fluid pressure in the crack remains below a critical value. 
They confirm that surface energy is one of the important 
mechanical properties controlling penetration. They also 
show that fluid pressure in the crack is critically involved 
in the penetration. If conditions favor containment of the 
crack at an interface, penetration will not occur until the 
critical pressure is exceeded. Under normal conditions of 
brittle crack propagation, if the crack does not penetrate 
at an interface on initial contact, it will not do so later. 
The results further show that an interface that favors con- 
tainment for crack approach from one direction does not 
impede penetration from the opposite direction. 

Although our experiments demonstrated the impor- 
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Fig. IO-Temperature log illustrating fracture containment in 
field treatment. 

tance of surface energy in controlling penetration, they 
have not confirmed the importance of shear modulus. 
Additional tests with materials having much different 
shear moduli but roughly equal surface energies would 
have been desirable. However, time restrictions 
prevented additional work along these lines. 

Our experimental results with plastic models are con- 
sistent with results reported by Daneshy for rock 
materials bonded with adhesive. Surface energy and 
shear modulus were not measured in these experiments. 
However, from fracturability tests, which were included, 
it can be inferred that the conditions for penetration were 
at least qualitatively consistent with Eq. 24. 

Field Applications 
There are numerous examples in field experience where 
fracturing results are consistent with the equations de- 
rived here. Hydraulic-fracturing treatments are frequent- 
ly carried out in a zone of one lithology overlain by a 
zone of different lithology bonded along a reasonably 
sharp interface. Sandstone or limestone intervals 
overlain by shales are the most common example. 
Temperature logs obtained before and after fracturing in 
such cases frequently show that the fracture did not 
penetrate into the overlying zone. 

An example of such a case is shown in Fig. 10. This 
figure shows temperature logs run before and after a very 
large fracturing treatment in a 50-ft [15-m] sandstone in- 
terval. The accompanying spontaneous potential (SP) 
log shows a fairly sharp interface between the sandstone 
and a thick overlying shale. The temperature logs in- 
dicate that there was no penetration of the fracture into 
the main shale zone. Such temperature logs are subject to 
various interpretations. 25 However, it is difficult to 
make a case for vertical fracture growth through the 
shale in this case. We find the example of Fig. 10 to be 
typical of much of our fracturing experience. 

The theory developed here can expIain Fig. IO and 
other examples like it, on the basis of mechanical proper- 
ty differences between the two zones. This is not to say 
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that stress conditions do not also play an important role. 
But stress differences are not required to explain fracture 
containment or the absence of it in a given case. 

Our theoretical results are of little value in predicting 
fracture penetration in specific field cases. This is 
because of the difficulties in determining surface energy 
and shear modulus in earth materials. Such determina- 
tion would be limited to laboratory measurements in core 
samples. Even these would be restricted to competent 
rock intervals. Laboratory measurements in materials 
such as shales, for example, would have little meaning 
because of the changes induced by removing the material 
from the earth. In-situ measurements are also imprac- 
tical. In-situ methods of measuring surface energy are 
unknown and it is difficult to conceive of logging or 
seismic data that could yield this quantity. In-situ deter- 
minations of shear modulus from sonic logs are not im- 
practical. However, since rocks are not ideally elastic, 
there is no assurance that the dynamic modulus from a 
sonic log would be even approximately equal to the re- 
quired static value. 

The value of the theory is not in predicting results for 
specific cases but in establishing a general principle. The 
example of Fig. 10 is not uncommon in fracturing ap- 
plications. Therefore, it can be assumed that, in many 
field cases, barriers will exist above and below the pro- 
ductive interval that will prevent vertical fracture 
penetration at treating pressures below the limit given 
approximately by Eq. 24. When this is the case, a 
hydraulically induced fracture will extend vertically to 
the barriers and stop, as in the plastic model experiment 
of Fig. 9. At this point, under normal conditions of brit- 
tle crack growth, fluid pressure in the fracture will be 
declining, or, at worst, remaining roughly constant. 
Therefore, if fracture penetration did not occur at the 
barrier initially, it will not occur later, as long as the in- 
jection rate is not increased. This means that the fracture 
will maintain a constant height and grow only laterally 
away from the wellbore as in the plastic model of Fig. 9. 
This is one of the simplifying assumptions made in most 
theories of fracture propagation. The results presented 
here show that this assumption is reasonable. 

These results should be considered in planning large- 
scale fracturing operations in fields containing many 
wells. The potential barriers to vertical fracture exten- 
sion must be guessed at initially. But fracturing ex- 
perience in the first wells to be treated can be used to 
identify the barriers if they exist. Provisions should be 
made to extend the temperature logs well below the 
treated interval to identify the underlying as well as the 
overlying barrier. The interval determined in this way 
can then be taken as the expected fracture height for 
design of subsequent treatments in the field. 

Fracturing-mineback experiments reported by Warpin- 
ski et al. l7 have important bearing on our results. These 
experiments, conducted at the Nevada Test Site, showed 
that fractures generated in an ash-fall tuff zone 
penetrated into an overlying welded tuff having con- 
siderably higher shear modulus. Surface energies were 
not measured. However, modulus values, together with 
physical descriptions, suggest that the welded tuff should 
have higher surface energy than the ash fall. Therefore, 
penetration of the fracture into the welded tuff seemingly 
contradicts Eq. 26. However, the transition between 

zones is not sharp in this case but consists of several feet 
of highly varied lithology. Consequently, it is not sur- 
prising that our theory is not applicable in this case. 

The mineback results emphasize an important point 
regarding application of our theory. The nature of the in- 
terface between dissimilar rock materials is an important 
factor. The limits of applicability of our simplified 
theory are difficult to assess in this regard. The well- 
defined interfaces of our Plexiglas resin models and 
Daneshy’s cemented rock models ” will not be found 
very often in reservoir rock. On the other hand, the inter- 
faces typically exposed in outcrops, roadcuts, and other 
excavations suggest that sharp transitions between 
lithologically different rock layers are not rare. 
However, the applicability of our theory probably 
depends more on this factor than any other. 

Conclusions 

An approximate theory has been developed for fracture 
penetration through an interface between bonded 
dissimilar materials under uniform stress. The theory 
shows that mechanical property differences on either 
side of such an interface can prevent fracture penetra- 
tion. The product of surface energy and shear modulus is 
shown to be the dominant factor controlling penetration. 
When this product favors containment, penetration will 
not occur until fluid pressure in the crack exceeds a 
critical value. The critical pressure is related in a simple 
way to the surface energy/shear modulus products for 
materials on either side of the interface. 

The basic features of this theory have been confirmed 
by laboratory experiments in plastic models. These ex- 
periments verify that mechanical property differences are 
sufficient to prevent fracture penetration until a critical 
fluid pressure is exceeded in the crack. They also con- 
firm that surface energy is one of the controlling 
mechanical properties. However, the experiments did 
not prove that shear modulus is the other controlling 
factor. 

The theory developed here is of little benefit in pre- 
dicting fracture containment or penetration in specific 
field cases. Problems in determining surface energy and 
shear modulus preclude this use of the theory. Its main 
value is in establishing a general principle with broad 
field applications. Under normal conditions of brittle 
fracture propagation, penetration of an interface must oc- 
cur when the crack makes initial contact. Normal decline 
in fluid pressure in the crack prevents penetration at a 
later time. In field operations, this can lead to fractures 
that have constant height throughout most of a fracturing 
treatment. 

This concept should be applied in large field opera- 
tions involving fracturing treatments in many wells. 
Temperature logs should be used in initial treatments to 
recognize interfaces that provide fracture containment. If 
such interfaces exist, they can be assumed to determine a 
constant fracture height which can be used for design and 
optimization purposes. 
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Nomenclature 

A= 

b= 

B= 

2c = 
exr = 
eyy = 

exr = 
E= 

F= 

G= 

h= 
L= 

P= 
N= 

P= 

r= 

S= 
t= 

T= 

u,v = 
v, = 

v= 

w= 

w= 

x,y = 
Y= 

z= 
z= 

6= 
EZ = 

Ee = 

constant of integration in solution 
(Eq. B-5) of Laplace’s 
equation (Eq. 2) in polar 
coordinates 

penetration distance of crack into 
Medium 2 as illustrated in Fig. 4 

constant of integration in sinusoidal 
solution (Eq. 6) of Laplace’s equa- 
tion (Eq. 2) in x-y plane 

crack length from tip to tip 
x strain component 
y strain component 
x-y strain component 
Young’s modulus, dyne/cm* [Pa] 
tensile force on bar of Fig. 6 at 

which crack propagation is 
initiated, dyne [mN] 

shear modulus, dyne/cm* [Pa] 

thickness of bar of Fig. 6, in. [cm] 
crack length in bar of Fig. 6 at which 

crack propagation is initiated, in. 

[cm1 
inverse length defined by Eq. 7. 
elastic constant appearing in Eq. 4 
internal fluid pressure in crack, 

dyne/cm* [Pa] 
polar coordinate 

surface energy, erg/cm* [Nm/m*] 
time variable 
tensile load applied to cleavage bars 

of Fig. 6, dyne [mN] 
displacement vectors 
crack displacement at interface 
crack volume 
width of bar of Fig. 6 across notched 

region, in. [cm] 

energy required to generate crack 
volume V 

space coordinates 

Young’s modulus in beam bending 
complex quantity defined by Eq. B-3 
dimensionless quantity defined by 

Eq. 16 
displacement 
longitudinal strain measured in 

cylindrical specimens by strain 
gauge techniques 

circumferential strain measured in 
cylindrical specimens by strain- 
gauge techniques 

{(r,e) = function used to represent solution of 
Laplace’s equation (Eq. 2) defined 
by Eq. B-4 

r] = space coordinate defined by Eq. 3 
0 = polar coordinate 
v = Poisson’s ratio 

~.Xx, uyyt oxy = stress components 

866 

UZ = longitudinal stress applied to cylin- 
drical specimen for strain-gauge 

measurements, dyne/cm* [Pa] 
$(x,7) = harmonic potential function used to 

represent displacement vector v 
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APPENDIX A 
Taking uxx to be negligibly small, the stress/strain rela- 
tions for an orthotropic material with elastic symmetry 
about the x and y axes can be written as26 

We apply to this problem the approximate theory 
developed in Appendix A. We cannot satisfy all of the 
boundary conditions at y=O, so we choose to allow the 
condition aXY =0 to be violated. The remaining boundary 
conditions (Eq. B-l) and Laplace’s equation (Eq. 2) of 
the text are verified by means of a conformal transforma- 
tion.27 We consider conformal transformation of the 
segment-c < x < c onto the unit circle by means of the 
relation 

z=x+iv=f 
1 ( ) r+- . . . . . . . . . . . . . . . . . . 
!r 

(B-3) 
a,=4 N eyy 

and 

a,=2 G eXy. . . . . . . . . . . . . . . . . . . . . . . . . . . (A-l) 

These stresses must satisfy the equilibrium equation 

as illustrated in Fig. 11. A solution of Laplace’s equation 
in the plane 

l=reie . . . . . . . . . . . . . . . . . . . . . . . . . . (B-4) 

aa, auxy -+ -=O. 
ay ax 

. . . . . . . . . . . . . . . . . . . . .(A-2) 
is written in polar coordinates as 

sin 0 
4=/t-. . . . . . . . . . . . . . . . . . . . . . . . . . .(B-5) 

r Using the additional approximation May Q av/ax 
reduces Eq. 1 of the text to 

This satisfies the boundary condition 

i av 
ex.=--. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2 ax 
(A-3) +=v=O for y=O, 1x1 >c. . . . . . . . . . . . . . . .(B-6) 

The normal derivative on the unit circle and on the cor- 
responding points of the x axis are related as Substituting this and the result for eYY from Eq. 1 into the 

stress/strain relations equation (Eq. A-l) and using the 
result in the equilibrium equation (Eq. A-2) gives 

~=1~l.~]~=,=-Alflsin8. . . (B-7) 

. (B-8) 

. (B-9) 

(B-10) 

. . (B-l 1) 

2 2 

.5&,,3=0. . . . . . . . . . . . . . . . . (A-4) 

On the unit circle we have 

Letting 

az=c 1-k =ice-iesinO. . . . . . . 
3- 2 ( > 

y=2lj J z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (A-5) 
Hence 

a4 A -=-- . . a~ c. . . . . . . . . . . . . . . . . . . . . . . 

Therefore, from Eqs. 4 and 5, the stress is 

reduces Eq. A-4 to Eq. 2 of the text. 

APPENDIX B 
We consider the problem that is fundamental to the Grif- 
fith crack propagation theory. t6 This is the problem of 
the half space v > 0 as shown in Fig. 1 I with the mixed 
boundary-conditions 

a,=0 for y=O, 

UJY = -p for y=O, 

and 

l-4 > c, 

P = -uyy =%FG. . . . . . . . . . . . , . . . . 
C 

The constant A is determined as 

A= ” 
2KG . . . . . . . . . . . . . . . . . . . . . . 

v=o for y=O, Ixl>c. . . . . . . . . . . . . . . . . .(B-1) 

The half-width distribution of the crack is Sneddon and Elliott I9 have obtained the exact solution 
of this problem by means of the theory of elasticity for an 
isotropic medium. Their solution is 

v=4(x,O)= cp sin 8= 
CP 

2&G 2fi 
2(1 -v2> x 2 

v= 
0-Y 

pc l-- . . . . . . . . . . . . . . 
E C 

(B-2) 
. . . . . . . . . . . . . . . . . . . . . (B-12) 
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A uniform pressure p 1 is applied inside the crack. The 
resulting crack width can be obtained from the principle 
of virtual work, 

Fig. 11-Conformal transformation of the crack on a unit circle. 

Eq. B-12 agrees with the exact result (Eq. B-2) if 

2fi= 
E 

2(1 _v2). . . . . . . . . . . . . . . . . . . . . 

This relation is satisfied if we take 

E 
G=_ 

2(1+v) ...***. 
. . . . . . . . . . . . . . . . . . . . (B-14) 

and 

E 
4N= 

2(1 -v)(l -v2). 
. . . . . . . . . . . . . . . . . . . (B-15) 

Eq. B-14 identifies G as the shear modulus. In our 
analysis, 4N is the elastic modulus in plane strain with 
u, -0. For isotropic media, we should obtain 

E 
4N=- 

1-v*. 

Thus Eq. B-15 is the correct result when v= l/2, which 
corresponds to an incompressible medium. For v< l/2 
Eq. B-15 is not exact, but the error is not large until v 
becomes small. 

APPENDIX C 

Consider a crack of sinusoidal shape in Medium 1. The 
stress distribution on the crack wall, where q =O, is also 
sinusoidal. From Eqs. 4 and 5 of the text, 

UYY = 
-2PdN,G,BcosPx. . . . . . . . . . . . . . . . . (C-l) 

The half-width distribution is 

v=$(x,O)=B cos h. . . . . . . . . . . . . . . . . . . . (C-2) 

The elastic energy of the crack is given by 

W=- ‘uyy vdr=n B* m. . ., . . . . . . . I 
--c 

868 

(C-3) 

:6B=2p, &ix, . . . . . . . . . . . . . . . . . . . 

--c 
(C-4) 

where we have assumed that the crack remains 
sinusoidal with 

6v=6B cos h. . . . . . . . . . . . . . . . . . . . . . . . . . . (C-5) 

This gives 

B= 
4CP I 

T2d;Iv,c, ; . . . . . . . . . . . . . . . . . . . . . . 

so the elastic energy becomes 

w= 
16c*p, * 

?r3dm . . . . . . . . . . . . . . . . . . . . . . . 

The volume of the crack is 

V=2 cvdx= 
s 

32p, c* 
rT3Jm , . . . . , . . . . . . . . 

--c 

(C-6) 

(C-7) 

(C-8) 

where we have substituted Eqs. C-2 and C-6 for v and B. 
The condition for crack propagation is obtained from the 
energy-balance equation 

av aw 
p, ,,sc- acsc=2s, 6c. . . . . . . . . . . . . . . (C-9) 

Substituting for V and W from Eq. C-8 and Eq. C-7 we 
obtain Eq. 8 of the text. 

Eq. 8 can be compared with the result derived by 
Sneddon and Elliott I9 from the Griffith theory, I6 

PC*= 
2S,E 

ac(l _v2). . . . . . . . . . . . . . . . . . . . . (C-10) 

Substituting Eq. B-13 into Eq. 8 gives 

PI*= 
a3S,E 

32c(l _v2). . . . . . . . . . . . . . . . . . . . . (C-l 1) 

This gives 

2 

fi=+=l.23. . . . . . . . . . . . . . . . . . . . . . . (C-12) 
PC 

Thus the sinusoidal approximation, together with other 
approximations and assumptions, leads to an error of 
23% in this case. For our purpose, this is not a signifi- 
cant deviation. 
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APPENDIX D According to Eq. 4 of the text, 

Consider a crack that has penetrated through the inter- 
face between Medium 1 and Medium 2 by a distance b. 
Assuming the crack in Medium 2 is approximately 
triangular in shape, the crack volume is 

OYY = 
-2a Bf sin fx. . . . . . . . . . . . . . . (D-6) 

Substituting Eq. D-6 and Eq. 10 of the text into Eq. D-5 
gives 

V=2 
s 

2cwi!x+v,b. . . . . . . . . . . . . . . . . . . . . . . . (D-l) 

0 

An approximate relation between v, and b is obtained 
from Eqs. 10, 15, and 17 of the text and is given by 

v, =B sin 2!c= BZ= 
?rbBG, 

. . . . . . . . . . . 2c G2 . (D-2) 

Substituting this result for v, and Eq. 10 of the text for v 
into Eq. D-l and using the approximate relation Eq. 16 
of the text for 2Pc gives 

4BC 
V=- ,_Z(l +cos Z)+BZb, . . . . . . . . . . . . . 

or, to the first order in 2, 

8BC 
v=- 1+z . . . . . . . . . . . . . . . . . . . . . . . 

7r ( > 7r 
(D-4) 

The elastic energy of the crack is given by 

w=- 2cv (Tyy a!x. , . . . . . . . . . . . . . . . . . s . (D-5) 

0 

W=B*ds Zd-isin 4d 
> 

. . . . . , . . . (D-7) 

From Eq. 16 of the text, 

W=?r B*JN,c, . . . . . . . . . . . . . . . . . . . . . .(D-8) 

When a fluid pressure p2 is applied inside the crack, the 
virtual work principle gives 

$iB=p2 ;,B. . . . . . . . . . . . . . . . . . . . . . (D-9) 

Therefore, 

B= 
4~~2 

7r*JN,c, 
. . . . . . . . . . . . . . .(D-IO) 

Substituting Eq. D-10 into Eq. D-4 and using Eq. 17 of 
the text for Z gives Eq. 20 of the text. Substituting Eq. 
D-10 into Eq. D-8 and again using Eq. 17 for Z gives 
Eq. 21 of the text. 

SI Metric Conversion Factor 
lbm X 4.535 924 = kg 
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