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New stability criteria are developed for steady state evolution of reaction-diffusion far from equilibrium. The derivation is 

based on the lagrangian equations of irreversible thermodynamics. A new and general expression is also developed for the 

affinity which embodies the chemical kinetics. 

1. Introduction 

A new variational approach to irreversible ther- 
modynamics has been developed leading to 
lagrangian equations of evolution. The essential 
results have been presented recently in the form of 
a short monograph [l]. Its foundation rests on a 
fundamental principle of virtual dissipation. 

Our purpose here is to derive new stability 
criteria for a steady state evolution based on 
lagrangian equations in the context of general 
reaction-diffusion. As a preliminary, the concepts 
of local energy and entropy per unit volume under 
irreversible evolution are given a precise definition 
and a new expression is also developed for the 
affinity which embodies chemical kinetics. A spe- 
cial derivation of the variational and the lagrangian 
equations is presented in the particular context of 
reaction-diffusion as well as a general expression 
for thermomolecular dissipation which is invariant 
under translation. 

A new stability criterion is obtained which does 

not require “local equilibrium” and distinguishes 
between oscillatory and non-oscillatory stability. 
The lagrangian equations also lead directly to a 
stability criterion analogous to that proposed by 
Glansdorff and Prigogine [2] providing at the same 
time a precise definition of an associated condition 
of “ local equilibrium”. 

2. Outline of a new thermochemistry 

We shall briefly recall the new viewpoints and 

results introduced earlier in the analysis of open 
chemically reacting systems, and based on con- 
cepts which differ fundamentally from standard 
procedures [ 11. 

Consider a rigid cell C, containing a homoge- 

neous mixture of pure substances k in equilibrium 
at a given temperature. It is subject to a transfor- 
mation which brings it to a certain temperature T 

while masses Mk are added to it from outside. At 
the same time masses vkt are also added to it by a 
chemical reaction of coordinate E. We have shown 
that the same transformation may be obtained 
reversibly by a process called thermobaric transfer. 

We refer to C, as the primary cell and adjoin to 

it large rigid supply cells Ck each containing the 
substance k at the same pressure and temperature 
poTo. We also adjoin a chemical supply cell C,, 
containing the reactants in chemical equilibrium 
along with a thermal well TW which is a large 
rigid reservoir at constant temperature To. The 
system C, + C,, + CkCk + TW is called a hyper- 
system. 

In order to illustrate the process of thermobaric 

transfer we extract a mass dMk from the supply 
cell, bring it reversibly to a state of equilibrium 
with the primary cell at the pressure pk and tem- 
perature T and inject it isothermally and reversibly 
into it through a semipermeable membrane. The 
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increase of energy of the system C, + CkCk is 

de/M = c ( gk + h;,)dMk, 
k 

(2-l) 

with 

Z, = pkT 
/ ( 

dp;/p; + T’dS,). 
PJO 

(2.2) 

We have called Z, the injection enthalpy and pk the 
injection pressure and denote by pi, pi, T’ and Sk 
the pressure, density, temperature, and specific 
entropy of dMk along the path of integration, 
respectively. The term hiTdMk represents the heat 
to be added to C, in order to maintain a constant 
temperature during injection. 

We may also consider a reaction d.$ to occur in 
the chemical cell C,, at constant temperature Teq 

which is maintained by injecting into it an amount 
of heat z?dE. The masses vkd[ produced are 
extracted from C,, and injected by thermobaric 
transfer into C,. Finally the temperature of C, is 

increased by an amount dT. 
Thus we end up with a system whose final state 

is the same as if masses dMk had been transferred 
into the primary cell while a chemical reaction d[ 

takes place in it with an increase of temperature 
dT. 

The increase of energy of the system C, + C,, 
+ CkCk in this combined process is 

d‘%= c ( ck + h;,)dMk + c (tk - iih + h:,)V,d( 
k k 

+hFd[ + C,,dT. (2.3) 

In this expression rib is the injection enthalpy in 
C,,. Similarly we obtain the increase of entropy of 
the System Cr + C,h + &Ck as 

dY= c ( S, + h;,/T)dMk 

k 

+x(S,-S,ch+hET/T)vkd[ 

k 

+ ( ~eq/L$S + (C,,/T)dT, (2.4 

where 

s, = 
J 

“hSk (2.5) 
POTI 

is the injection entropy and :ih its value for the 
chemical cell. 

The quantities zk, Sk, h kT and C,, appearing in 
the coefficients of the differentials (2.3) and (2.4) 
may be determined as functions of the tempera- 
ture and composition of C, hence as functions of 
T and Mk + vk[. By integration they yield 

a’= %(Mk, 5, T), Y=Y(Mk, [, T), (2.6) 

as function of Mk[ and T. These values may be 
considered as defining the energy and entropy of the 
primary cell although they involve the combined 
system C, + C,, + CkCk. As a consequence it is 
interesting to note that they depend not only on 
the composition Mk + vkt of the cell but also on 
Mk and 5 as separate independent variables. 

After multiplying (2.4) by T and subtracting it 
from (2.3) we obtain 

da= -Ad5 + x+kdMk + TdY, 
k 

(2.7) 

where 

+k = z, - Ts, (2.8) 

was called the convective potential. The quantity A 

is 

k 

(2.9) 

It represents the affinity since for an isolated 
system (da= dMk = 0) eq. (2.7) yields 

A = Td,Y’, (2.10) 

Eq. (2.10) is a new form of Gibbs’ equation 
which avoids the use of the chemical potential. 
Thereby bypassing the difficulty due to the pres- 
ence of undetermined constants in this potential. 

When there are simultaneous chemical reactions 
of coordinates t,, eqs. (2.3) and (2.4) are readily 
generalized to this case by adjoining to the hyper- 
system chemical cells C&,, for each reaction. Eq. 
(2.7) is thus generalized to 

da= - zA,d[, + x+kdikfk + TdY, (2.11) 
P k 

while expressions (2.6) become 

%=%(Mk,&, T), Y=Y(Mk,[,, T). (2.12) 
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3. Local energy and entropy of a continuous context of reaction-diffusion one of the simplest is 
irreversible system the following. 

The energy and entropy of an open rigid cell 
have been defined above by a reversible process 
called thermobaric transfer. The volume of the cell 
is arbitrary and may be taken as unity. In that case 
CP and Yare the values of the energy and entropy 
per unit volume. The variables are now the tem- 
perature T and the masses Mk added by convec- 
tion per unit volume while 5 defines the masses vk[ 
produced by the chemical reaction also per unit 
volume. If we consider a continuous system in 
irreversible evolution occupying a domain Sz the 
energy and entropy of an elementary domain dW 
are respectively ‘!Z!dQ and 9d9 where @ and Yare 
functions of the instantaneous local values of T and 
of Mk and 5 per unit volume. The total energy U 
and entropy S of the domain D are then expressed 
by the volume integrals 

We consider the mass flux A?: of substance k 
per unit area. If we denote by fii the heat flux, the 
diffusive energy flux is (the dot indicates a time 
derivative) 

$==@;+I-&. (4.1) 
k 

We denote by TM/ and H, the time integrals of 
q.n;r,” and Eii with zero initial value and call them 
respectively energy, mass and heat fluence. They 
satisfy the relations 

U= 
J 

‘@da, S= 9’dO. 
Jz / Q 

(3.1) 

Underlying this approach is the assumption 
that the domain may be divided into elements 
which are sufficiently small to be treated as infini- 
tesimal while their actual size remains above a 
resolution threshold for which T, Mk and 5 retain 
their physical significance as defined above with 
reference to a unit volume. The local values of Gk 
and A, are intensive variables functions of the 
temperature T and 

9= - za%/axi, Mk = - caM;/ax,, (4.2) 
i i 

where xi is the Cartesian coordinate. 
We now introduce arbitrary variations. Replac- 

ing differentials by variations in eq. (2.11) and 
solving for GYwe obtain 

69= (~/T)~~+~(A,/T)~~,-~(~,/T)~M~. 
P k 

(4.3) 

We also write eq. (4.1) in variational form as 

83 = c Ck8M; + 6Hi. (4.4) 
k 

Hence using (4.2) we obtain 

mk = mOk + c vkp&, + Mk, 

P 

(3.2) 
6Mk = - c &M;. 

i axi (4.5) 

where mk is the mass of substance k per unit 
VOhIne, mok being its initial value, while vkP,$, and 
Mk are the values added by chemical reaction and 
convection. Note that mk may represent all the 
masses present in the system per unit volume or 
only those substances which participate in convec- 
tion and reaction as solutes in a rigid neutral 

support. 

Substitution of these values into (4.3) yields an 
expression of the form 

69= - c -hi + as*, i axi (4.6) 

where 

SS, = xsk8M; + 6Hi/T, 
k 

(4.7) 

4. Entropy production and dissipation forces 

In an irreversible process entropy is produced. 
It may be evaluated in several ways. In the present 

(4.8) 



230 M.A. Biot / New stability criteria for reaction-diffusion 

The value (4.6) represents the variation of entropy 
per unit volume. The first term is due to the 
entropy flow while 6s* is the variation of entropy 
produced per unit volume. 

Actually in the applications we use the virtual 
dissipation 

The dissipative forces which generate entropy 

are 

1 aT --- 
T axi ’ 

(4.10) 

They provide a measure of the departure of the 
system from reversibility and may be called dis- 
equilibrium forces. They are conjugate to the coor- 
dinates .$,, iL4: and %. 

5. New expression of the affinity in terms of Referring to relation (4.9), the virtual dissipa- 

chemical kinetics tion for chemical reactions is 

We may draw an analogy between viscous forces 

in mechanics and dissipative forces in irreversible 
thermodynamics. For the case of chemical reac- 
tions this analogy has never been formulated in a 
satisfactory way. For example in a viscous fluid 
mixture the viscous stress 

T&Y *ch = c LzQpS[, (5.9) 
P 

and the corresponding rate of dissipation is the 
positive expression 

Ti*ch = c.@&&, ’ 0. (5.10) 
P 

rij=rij(mk, T, iBy) (5.1) 

may be expressed as a function of the temperature 
T, the concentrations mk of the constituents and 
the rate of deformation i,,. This relation embodies 
the kinetics of the dissipative process. A similar 
relation for chemical reactions may be derived as 
follows. We write the rate of reaction &, and the 
affinity A, as functions of mk and T 

tp =fp(mkT T), A,=A,(mk, T). (5.2) 

Assume that by adding masses COvkoA&, to mk we 

reach chemical equilibrium for which 6, and A, 

vanish. Hence we may write (5.2) in the form 

ip =fp(mk9 T) -fp(mk + %‘ko‘%> T), (5.3) 

A, =A,(mk, T) -A,(mk + &vko&,, T). (5.4) 

In the linear case, with a dissipation function (5.7) 
the rate of dissipation becomes 

Ti*Ch = F ( agch/a&) i, = 29ch > 0, (5.11) 

where gch is a positive definite quadratic form in 
t, with coefficients functions of mk and T. 

6. Kinetics of thermomolecular diffusion and 
invariance under translation 

According to (4.9) the virtual dissipation due to 

thermomolecular diffusion may be written 

T&Y *TM = c .@%M; + c .G%‘;tiE., (6.1) 
ki i 

We solve equations (5.3) for A[, and substitute the 
result into (5.4). This yields 

Ap=9p(mk? T, ip), (5.5) 

where the affinity BP is now expressed as a func- 
tion of mk, T and i,. Relation (5.5) is entirely 

analogous to (5.1) and embodies the chemical 
kinetics. 

In many cases we may approximate expression 

(5.5) by a linear function of &, and write 

9p=Cgpo(mk, T)t,, (5.6) 
* 

where gpO are functions of mk and T. If in addi- 
tion Onsager’s reciprocity relations are verified we 
may introduce a dissipation function 

LP = : cS?p,~p&, (5.7) 
PO 

and write (5.6) as 

gP = a9ch/a&, . (5.8) 
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where the dissipative forces are expressed as 

(6.2) 

(6.3) 

The functions 9%‘” and 5%‘: embody the irreversible 
kinetics of the thermomolecular diffusion. They 
are functions of the local state mk and T and the 
mass and energy fluxes tii’q. In general they will 
be linear functions of the fluxes and obey Onsager’s 
reciprocity principle. Hence they may be written in 
the form 

a; = a9TM/atip, a; = az2TM/a.$, (6.4) 

with a thermomolecular dissipation function 

It is a positive definite quadratic form in ni,” and 
* with coefficients C’k(mk, T), CkF(mk, T) 

CF(mk, T) functions of mk and T. 

In many cases the mixture is a fluid medium 
with intermolecular diffusion. In that case the 
dissipation function must be invariant under a 
uniform translation. A uniform increase of veloc- 
ity ui adds mkui to &i,,” and SUF to 4, where 

SC=Cmk(?k+h,kr). (6.6) 
k 

The quantity Ek + hi= is the energy required to 
inject a unit mass of substance isothermally into 
the mixture and h$ is the additional heat to be 
injected in order to maintain the temperature and 
pressure constant. A dissipation function which 
satisfies the condition of invariance under transla- 
tion is obviously of the form 

67) 

That this is the only form satisfying the invariance 
condition can be seen by adding to (6.7) the terms 
needed in order to obtain the most general 

quadratic form in ni,” and $. These terms are 

CAk( UF)’ + ES?&@. (6.8) 
ik i 

However, they must vanish since they are not 
invariant under translation. 

An invariant expression for gTM was also de- 
rived earlier using the entropy flux $ instead of % 

VI. 

7. Principle of virtual dissipation and lagrangian 
equation of reaction-diffusion 

For reaction-diffusion the principle of virtual 
dissipation developed earlier in a broader context 
[l] may be derived as follows. We consider a 
hypersystem constituted by a primary system, 
supply cells C,, chemical cells C,,, and a thermal 
well TW. The primary system is a continuous 
system occupying the domain D whose energy and 
entropy are defined by (3.1). 

We consider an arbitrary irreversible evolution 
of the primary system determined by a time se- 
quence of z&, M/ and 9$ By eqs. (2.12) and (4.2) 
this also determines the time sequence of &,, Mk 
and T. We freeze the system at any particular time 
and consider arbitrary variations St,, SMF, 8% in 
the vicinity of a frozen state. In this variation no 
heat or matter is exchanged between the hypersys- 
tern and the environment, and the variation is 
generated by the virtual work SW performed by 
external forces on the hypersystem. The work is 
the purely mechanical work necessary to inject 
masses and heat into D as required by the values 
SMP and 6Hi at the boundary of a, using supply 
cells as a source of matter and TW as a source of 
heat for mechanical heat pumps. 

The variational principle is obtained by writing 
that the variations obey a virtual conservation of 
energy of the hypersystem. This is written 

NJ + TOSS, = 6 W. (7.1) 

In this expression 6S, represents the increase of 
entropy of TW, hence MJ + TotiS, is the increase 
of energy of the hypersystem. By introducing the 
exergy 

V=U-T,S (7.2) 
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(7.1) b ecomes 

61/+ 7&Y* = 6W, 

where 

(7.3) 

as* = ss + 6Srw (7.4) 

is the total virtual entropy produced in the hyper- 
system. 

Eq. (7.3) expresses the principle of virtual dis- 

sipation. It remains to show how to evaluate 6 W 
and 6S* for reaction-diffusion. 

We write 6W as a surface integral extended to 

the boundary A of the domain Q with a unit 
normal n,. This value is 

6W= - & [ t+b,GM,k + (O/T)tSH,] n, dA, (7.5) 

where 8 = T - To. The mass injected into L? per 
unit area is -Ci6Mi’kni. It is extracted from the 
supply cell at the pressure and temperature poTo, 
then heated and compressed to a suitable pressure 
and temperature pk and T, then injected reversibly 
into D at the boundary. The purely mechanical 
work to accomplish this, including the use of heat 
pumps, per unit mass, was called thermobaric 
potential [l]. Its value was found to be 

+Lk = [;;(dp;/p; + 0’d$) = fk - T,S,. (7.6) 

The path of integration is arbitrary and corre- 
sponds to what we have called a thermobaric 
transfer. The values of the pressure, density, 
specific entropy, and temperature along the path 
arep;, pi, S; and T’ with 8’ = T’ - To. In (7.5) the 
term (- B/T)EH,n, is the work of a heat pump 
extracting heat from TW and injecting the heat 
SHini through the boundary at the temperature 
T= To+ 8. 

Substitution in (7.5) of the value (7.6) of +l~~ and 

the value 6Hi extracted from (4.4) yields 

(To/T)~+,6M;+(8/T)6~ 
k 1 

X n,dA. 

The virtual dissipation is 

(7.7) 

TOSS* = To 
J 

( 8s*Ch + Gs*TM)dS2, 
Q 

(7.8) 

where Gs*‘~ + 8s*TM is the total virtual entropy 
produced per unit volume. Using the values (5.9) 
and (6.1) and the values (6.4) for L%?,~ and .G%‘r we 

obtain 

ToaS* = To 

(7.9) 

Applying the principle of virtual dissipation 

(7.3) we may derive the evolution of a reaction-dif- 
fusion field in terms of generalized coordinates by 
proceeding as follows. The reaction-diffusion field 
is given by the vector fields T and MF and the 
scalar fields 5,. They may be expressed in the form 

q = cz&, M; = &4;.qi, 6, = &;q,, (7.10) 
i i i 

where uiF,(x,), u$(x,), up(x,) are suitable chosen 
functions of the coordinates x1 while qi are gener- 
alized coordinates to be determined as functions of 
time. Once we know q, we obtain from (4.2) 

%= - Ca3yaxj = cw,Fqi, 

.i i 

Mk = - c i3M;/axj = c w;q;, 
i i 

where 

(7.11) 

wiF = - Cau,;/axj, W,” = - ~au~/ax,. (7.12) 
i j 

Knowing %/, Mk and E, we determine the tempera- 
ture T from relations (2.12). 

The generalized coordinates as functions of time 
are governed by a system of differential equations 
called lagrangian equations. They are obtained 
from the variational principle (7.3) by introducing 
arbitrary variations 6q, in the values (7.10). The 
exergy (7.2) may be considered as a function V( qi) 
of the generalized coordinates qi. We may write 

6V=~(aV/aqi)6qi, ToaS* =xRi8qi, 
i i 

6W= zQi8qi. (7.13) 
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Substituting the values (7.13) into the variational 
principle (7.3) with arbitrary variations 6qi yields 
the lagrangian equations of reaction-diffusion as 

aT//aq, + Ri = Qi. (7.14) 

It is easily shown that 3V/i3qi may be obtained 
without actually evaluating V(q;) as an explicit 
function of q,. The generalized driving force Qi( t) 
is a given function of time if the values $k and the 
temperature T are determined as functions of time 
at the boundary. The combined generalized ther- 
momolecular and chemical dissipative force 

Ri=Ri(q/, 4r) (7.15) 

is a function of q, and 4, with the fundamental 

property 

CR& > 0. (7.16) 

8. New stability criteria of evolution 

Consider a system where the values $k and the 
temperature T are time independent at the 
boundary. A possible evolution of the system is a 
steady state where the temperature T and the 
masses mk per unit volume are also time indepen- 
dent along with the time derivatives*, %fF and &, 
throughout the system. 

The question is to evaluate the stability of such 
a steady state far from equilibrium. The lagrangian 
equations (7.14) provide a completely general tool 
for such a stability analysis. The steady state field 
may be represented by putting 

q1=at, q2=q3,...,qn=0 (8.1) 

in expressions (7.10) where the steady state corre- 
sponds to the value q1 = at proportional to the 
time t. A perturbed field is represented in terms of 

small perturbations Aq, by putting 

qi=“t, qz=k, qs=Aqs,.-.+I,,=&,,. 

If the values of the temperature and & remain 
unperturbed at the boundary, Qi remains un- 
perturbed. In that case the lagrangian eqations 
(7.14) for small perturbations become 

c (i32V/aqi8qj)Aqj + ARi = 0, (8.2) 
j 

where 

ARi =C (aRi/aQ,)&j + C (aRi/aqj)Aqj, 
i 

j=2,3 ,-.*, n. 

Putting 

_i 

(8.3) 

a2v/aqiaqj = aij = aji, 

Cij = aRi/aqj, rij = aRi/adj, (8.4) 

the perturbation equations (8.2) are written 

C (aij + cij)Aqj + zrijAcjj= 0. 
j i 

(8.5) 

The coefficients (8.4) are evaluated for un- 
perturbed values (8.1) of q, and it is easily seen 
that they are constants for a steady state. 

The stability analysis of the steady state reac- 
tion-diffusion in the general case is thus reduced 
to solving a system of homogeneous differential 
equations with constant coefficients. The system 
will be stable if all characteristic roots have nega- 
tive real parts. 

There is, however, a particular case where it is 
possible to take advantage of the thermodynamic 
properties to derive a direct stability criterion. Let 
us assume that the affinities are linear functions of 
the reaction rates, i.e. 

Since the thermomolecular dissipative forces (6.4) 
are linear functions of the rates k$ and ni,“, the 
total dissipative generalized forces Ri are also lin- 
ear functions of Qi. Hence we may write 

(8.7) 

where the coefficients rij are functions of the gen- 
eralized coordinates qr. An important property 
here is the positive-definiteness (7.16) of 

CRi4,=Cqj(qi)4iqj. (8.8) 
i ij 

In addition we shall also assume that .%‘p is 
expressed by (5.8). Due to expressions (6.4) for 9: 
and giF this implies r,, = ran. 
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In the present case the perturbed value (8.3) of 
Ri becomes 

AR,=C(ar,,/aqj)4,Aq,+Cr,j(ql)A~j. (g-9) 
i i 

Hence 

cij = (+dG,) 419 (8.10) 

while rij is a constant obtained by substituting for 
qr the values q1 and q2 = q3,. . . , q,, = 0. According 
to (8.8) the coefficients rij are positive-definite i.e 

cr,jAq,Aqj > 0. (8.11) 
ij 

This important relation based on irreversible 
thermodynamics leads to a new stability criterion 
obtained as follows. Multiply eqs. (8.5) by Aqi and 
add the results. We obtain 

c (ajj + cij)AqiAqj + crijAqjAqj = 0. (8.12) 
ij ij 

This may be written 

x(aij+ cij)AqiAqj+:dD’/dt = 0, (8.13) 
Ij 

where 

D’ = crijAqiAqj. 
d 

(8.14) 

According to (8.11) it is positive-definite. Let us 
assume that 

C(aij+cij)AqiAqj>O, 
ij 

(8.15) 

i.e. that it is also positive-definite. In that case eq. 
(8.13) shows that dD’/dt < 0. Since D’ is 
positive-definite it means that the perturbations 
Aqi tend to zero. As a consequence condition 
(8.15) is a sufficient condition for the steady state to 
be stable. 

If condition (8.15) is not fulfilled the perturba- 
tions may be unstable and contain exponentially 

increasing solutions. Whether the perturbed solu- 
tion is stable or unstable two cases may be dis- 
tinguished. 

(1) If cij = cji all characteristic roots are real 
and the perturbations are non-oscillatory. 

(2) If cij # cji some of the perturbation terms 
may be oscillatory. 

An interesting stability criterion may also be 
derived under fixed boundary conditions by multi- 
plying eqs. (8.2) by Aqi and adding the results. We 

obtain 

~(~*V/‘~qi~qj)AqiAqj+~RiAqi=O. (8.16) 
ij i 

If we assume 

C ~~~~~ > 0 (8.17) 

and 

(8.18) 

by an argument similar to that used above for 
equation (8.12) we conclude that Aqi must tend to 
zero. Hence when the two inequalities (8.17) and 
(8.18) are verified simultaneously the steady state 
evolution is stable. Condition (8.17) is similar to 
the one derived by Glansdorff and Prigogine [2]. 
However, it is obtained here by a very simple and 
general direct procedure. The additional condition 
(8.18) required may be considered as expressing in 
precise form the assumption of so-called “local 
equilibrium” implicit in current procedures. 
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