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Simplified stability criteria for nonconservative 

dynamical systems with application to wing flutter (*) 

by M. A. BIOT 

A bsrract. - Oscillations of a purely gyrostatic system with two degrees of 
freedom are constituted by elliptic precessions rotating in opposite directions. 
Adciition of nonconservative forces feeds power into one of them, generating 
instability. The effect of damping provides a stability condition whose advan- 
tage and simplicity over Routh’s criterion is indicated. A gyroscopic analog 
model has been built and is described. Application to wing flutter is briefly 
discussed. Generalization to n degrees of freedom is immediate. The theory 
involves second order perturbation. 

1. INTROD~~~N 

A linear dynamical system is considered which includes damping, 
gyrostatic and nonconservative forces. We first consider the two pre- 
cessions of the purely gyrostatic system with two degrees of freedom. 
The work done by nonconservative forces on these precessions is 
evaluated and compared to the energy dissipated. This provides a 
stability criterion showing that only one of these precessions can be 
unstable. By applying Routh’s stability criterion it is found that it may 
be factorized, each factor corresponding to one of the two precessions 
and leading to exactly the same stability criterion as derived here by 
energy balance. In addition to its simplicity the latter has the advan- 
tage of determining which particular precession is unstable while 
Routh’s criterion is global. 

A gyroscopic model illustrating these properties has been built and 
is described. The model constitutes an analog for wing flutter and a 
short discussion provides physical insight clarifying well known fea- 

(*) This work was developed by the author at the California Institute of Technology 
in the year 1940 and is presented here for the tint time. 
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tures derived empirically from numerical analysis. The results are 
readily generalized to n degrees of freedom. 

2. OSCILLATING GYROSTATIC SYSTEM 

A two degree of freedom system with elastic restraint and gyrostat- 
ic forces is governed by the equations 

li’r + w:q, + yg* = 0 

42 + w:q, - 74, = 0 
(1) 

The dot above a symbol denotes a time derivative. The system is 
described by generalized coordinates q, and q2, and y is a coefficient 
defining the gyrostatic forces. For y = 0 there are two uncoupled 
natural modes of angular frequencies o, and c+. 

When y f 0 the amplitudes q,, q2 are not independent. The solu- 
tions are of the type exp(pt) where p satisfies the characteristic equa- 
tion 

p4 + <co: + 0: + y2)p2 + f&B; = 0 (2) 

The roots p* are real and negative and the roots p are pure imaginary 
iR,, in,. For small values of y these roots differ from io, and iw2 by 
a term proportional to y *. Hence we may write approximately 

Q, = WI, Q* = 02. In the corresponding solutions the values of q, and 
q2 are 90 degrees out of phase. The solution of frequency o, is 

q, = M, cos (w,t + at) 

42 = MI 
PI 

2 sin (wit + a,) 
0: - WI 

where M, and a, are arbitrary. Similarly the solution of frequency cc2 is 

q1 = M, P* ,sin (w2t + a2) 
riJ: - w2 

q2 = M2 cos (w,l + a*) 

We shall assume w, > u2. 

(4) 

These solutions represent elliptic precessions in the plane q,, q2. In 
solution (3) the representative point describes a flat ellipse with a 
higher frequency o, and its large axis is along q,. In the second solu- 
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tions (4) of lower frequency o2 the large axis lies along q2. The two 
types of solutions are obtained from each other by interchanging q, 
and q2. Hence the two precessions rotate in opposite directions. This 
feature as we shall see has an important bearing on stability proper- 
ties. 

3. INSTABILITY DUE TO NONCONSERVATIVE FORCES 

With the addition of nonconservative forces equations (1) are writ- 

ten 

q + w;q, + yq2 = -kq, 

42 + &2 - PII = kq, 

(5) 

The nonconservative terms on the right side are assumed small and 
represent a force normal to the radius vector (q, q2) acting clockwise 
or counterclockwise depending on the sign of k. It performs work on 
the two precessions (3) and (4). Since they rotate in opposite directions 
this work is positive for one precession and negative for the other. 
Hence the nonconservative force produces instability of one of the pre- 
cessions and damps out the other. 

The average power input of the nonconservative force on the pre- 
cession over a time interval t covering an integer number of cycles is 

p”” = f 
s 

(kq,q, - kqA)dt 

0 
(6) 

Substituting the values (3) and (4) we find 

Py = M; 0: 
k y r= -M; 

ot 
0: - 02 2 0: - CO2 2 k y (7) 

where Py is the power input into the precession of higher frequency 
w1 and P;‘the power input into the precession of lower frequency w2. 
We note that the stability depends on the sign of ky. If it is positive it 
is the higher frequency precession which is unstable. 

This result brings to light the important feature that the instability 
is proportional to ky and inversely proportional to the difference of the 
squares of the natural frequencies of the system. 
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4. STABILITY CRITERIA BASED ON ENERGY BALANCE 

Let us add damping to the system. Introducing a dissipation func- 
tion D, the power dissipated is 

2D = IV: + 28124142 + i%4: (8) 

and the equations of motion (5) become 

41 + ($7, + P,4, + 0,242 + Y42 = -kq, 

~i2 + oh2 + Btd, + P2q2 - ~4, = kq, 
(9) 

The average power dissipated over a tune t is expressed by 

I 

2D’z; s Ddr 

0 

where t covers an integer number of cycles. 
In the precession of frequency o1 the main motion is along q, 

while for the other precession the main motion is along qp 
Hence we derive 

where 2Dy and 2Dy represent respectively the power dissipated in the 
precessions of frequencies or and w2. 

Stability requires that the dissipation be larger than the power 

input. This requires 

2D’f” > I=‘;” 2Dy > e (12) 

Substitution of the values (7) and (11) yields the stability criteria 

PI ’ 
2ky 2ky 

0: - 4 
P2 ’ - 

0: - 0: 
(13) 

Again depending on the sign of ky one of them is always identicaly 
verified and we need only satisfy the other. 
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5. COMPARISON WITH ROWTH’S STABILITY CRITERION 

The differential equations (9) represent the most general linear two 
degree of freedom dynamical system with elastic restraint and con- 
stant coeffkients. Its general solutions is expressed by characteristic 
solutions of the form exp(pt) where p is a root of the characteristic 
equation 

with 

p4+A,p3+A2p2+A,p+A,=0 

A,=wfw;+k2 

A, = $,o: + ,L?,o; + 2ky 

A2=w:+o:+&!?2-~:2+y2 

&=8,+/32 

(14) 

(15) 

The system is stable if all characteristic roots have a negative real part. 
The necessary and sufficient condition for this to be the case is that all 
coefficients (15) be positive and in addition that 

A,A,A, - A:A, - A: > 0 (16) 

This is known as Routh’s stability criterion, (see [l]). In our case it is 
immediately evident that A,, A, A, are always positive so that we are 
left with the two conditions A, > 0 and (16). 

If y and k as well as the damping are small the coefficients (15) 
become 

A 0 = o+; 

A, = j?,w; + j?20: + 2ky 

A,=w:+w; 
(17) 

A, = B, + 82 

We substitute these values into expression (16). A large number of 
terms cancel out and the remaining ones may be factorized in the 
following form 

[p,(w: - a’,) - 2ky]fJ,(w: - w:) + 2ky] > 0 (18) 
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On the other hand the second criterion A, > 0 may be written 

A,(w; = fL4) = c&?,(W: - 0:) -- 2ky] + o:~:(o: - w:> + 2ky] > 0 

(19) 

The inequality (IS) shows that the factors must be of the same sign 

and inequality (19) that they must be positive. 

Hence Routh’s stability criterion becomes 

/?,(w: - w;) - 2ky > 0 j?,(o; - C/J;) + 2ky > 0 (20) 

This coincides exactly with the stability criteria (13) derived from 

energy balance. It can be seen that they are much simpler that 

Routh’s criterion in its original form. Moreover they indicate which 

precession is unstable while Routh’s criterion refers only to global 

instability. 

6. DEMONSTRATION MODEL(') 

A mechanical model governed by equations (5) has been built for 

the purpose of demonstrating the precessional instability. It is shown 

in figure 1. An electric motor EM with a vertical axis A is suspended 

through springs S from an inverted U frame F itself fixed to a base B. 

A horizontal copper disk D is mounted at the bottom of the motor 

shaft. The disc rotates above a horizontal horse-shoe magnet of poles 

P. There are two degrees of freedom measured by the angle 4, of 

oscillation of the axis about a center 0 in the plane of the figure and 

an angle q2 of oscillation normally to this plane. The natural frequen- 

cies of these motions are w, and w2 with W, > oz. When the motor 

rotates the disc D introduces gyrostatic forces ~4~ and -yg, in equa- 

tions (5). Also when the disc is off center the braking effect of the 

eddy currents induced by the magnet generates a nonconservative 

force normal to the displacement from the center. This force is repre- 

sented by the terms -kq, and kq, in equations (5). In order to predict 

the behaviour of the model consider the case where an observer stand- 

ing on the disc witnesses a rotation from right to left. In this case y 

and k are both positive. Hence ky is positive. Note that a change of 

(‘) The model was built in-the year 1940 et the Califomis Institute of Technology and 

has been recently donated IO the Institute of Applied Mechanics of the Free University of 

Brusseis. 
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the direction of rotation reverses the sign of both y and k so that ky 

remains positive. As a consequence the precession of higher frequency 
w,, is always the unstable one. This is in fact what is observed. The 
axis exhibits a tilting oscillation q, involving the springs S and the axis 
A performs a flat elliptic precession whose major axis lies in the plane 

of the figure. 

c 
2 t ’ 

1 A 
,i p, L s 

s 
I 

FIG. 1. - Demonslrdion Model: EM ektric motor suspended throught springs S 

form a frame F fixed to a base B. A copper disc D, attached to the bottom of the motor 

shaft A rotates above a horseshoe magnet of poles P. When the motor rotates it oscillatn 
in a flat elliptic conical precession, of major axis in the plane of the figure, and tilting 

motion q, in that plane. 

7. APPLICATION TO AEROELAS’IX WING FLUTTER 

The foregoing results provide a fundamental simple model for the 
unstable oscillations of a wing of infinite span facing a wind of veloci- 
ty V a phenomenon known as flutter. The wing is restrained elastically 
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in pitching motion and vertical translation. The aerodynamic forces 
acting on the oscillating wing have been derived by Theodorsen and 
involve the socalled Theodorsen function Y which is a complex quan- 
tity dependent on oc/2V (o angular frequency, c wing chord) (see 

(21). In the practical range we may put approximately Y = i. With this 

value it is possible to show that the equations of oscillation of the 
wing may be written in the form (9) with ky positive. The generalized 
coordinates of the system are q, which represents mainly a rotational 
mode of higher frequency CO, and q2 which represents mainly a trans- 
lational mode of lower frequency oz. These modes which are natural 
modes involve masses which include the virtual mass of the surround- 
ing air and certain aerodynamic forces which act like elastic force and 
are q, dependent. 

The foregoing conclusions regarding equations (9) are applicable 
here. Since ky > 0 the rotcitional oscillation of higher frequency w, is 
the unstable one and the stability condition is given by (13) as 

(21) 

where /3, is the aerodynamic damping of the rotational oscillation. We 
note the increase of instability for a decreasing difference between 
frequencies. It can also be shown that moving the center of gravity 
forward increases /?t hence improves the stability. When the wind 
velocity V increases 8, and y are proportional to V while k is propor- 
tional to V’. Hence ky is proportional to V3. As a consequence the 
inequality (21) shows the sudden explosive appearance of flutter as 
the wind velocity increases beyond a critical value. This effect is 
further enhanced by the fact that CO: also tends to decrease with 
increasing V. 

The fundamental characteristics of flutter derived here quite simply 
from the analog gyroscopic mode1 are well known to flutter specialists 
as empirical rules derived from numerical analysis. 

We have assumed Y = 1 2 but similar qualitative conclusions may be 

obtained by introducing other values of Y including complex ones. 
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8. GENERALIZATIONTO n DEGREESOFFREEDOM 

With n degrees of freedom equations (9) are generalized to 

(22) 

with 

Bij = Dji Yij = -yij k, = -k, 

Without damping and nonconservative forces the equations are 

reduced to those of a purely gyrostatic system 

iii + wfq, + 1 yi,4j = 0 (23) 

General solutions of the type exp(p:) leads to an algebraic equation 
for the characteristic roots p of degree 2n. However the equation 
remains invariant if we change p into -p hence it is an equation of 
degree n in p’. It is easy to show that these roots are real and negative. 
Hence the roots p are pure imaginary *Qi. Also the characteristic 
equation for p2 is invariant if we replace yii by -yV Hence if yii is of 
the first order the roots R differ from oi by terms of the second order 

so that we may put the Q’s equal to ofi 
As a consequence each characteristic solution of (23) involves qi 

and a set of qi (j # i) of the order of the yij5. Neglecting higher order 
terms we write (23) as n - 1 equations 

‘ij f u;qj + yjiQi = 0 (24) 

For any particular characteristic solution of approximate frequency w, 
this determines qj in terms of qP If we put 

qi = M,cos(w,f + ai) (25) 

equations (24) yield 

9j = 
Miyjiwi 

0; - oj 
sin (o,t + ai) j # i 

This generalizes the two-dimensional solutions (3) and (4). For each 
axis i expressions (26) define a direction 
plane qi = 0. This direction along with 
space and equations (25) (26) represent 
plane with a large axis along qP 
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There are n such elliptic precessions representing the general solu- 

tion. In order to derive the stability of any particular precession we 
evaluate the average power input of the nonconservative force on the 
precession. This is written in general 

I 

0 

(27) 

We substitute the values (25-26) for the i” precession and retain only 
the terms containing qi since the others are of higher order. This yields 

The energy dissipated by the ifh precession is 

(29) 

Stability of the precession requires that this energy dissipated be 

larger than PT. Hence the stability criterion 

(30) 

which generalizes the criterion (13) to n degrees of freedom and deter- 
mines which of the n precessions are unstable. It is valid only if 
Wi + Wj 
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