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Summary. A basic theory of two-dimensional (2D) fracture propagation has been developed with a 
Lagrangian formulation combined with a virtual work analysis. Fluid leakoff is included by the assumption that 
an incompressible filtrate produces a piston-like displacement of a compressible reservoir fluid with a moving 
boundary between the two. Poiseuille flow is assumed in the fracture. We consider both Newtonian and non- 
Newtonian fluids with and without wall building. For non-Newtonian fluids, we assume the usual power-law 
relation between shear stress and shear rate. The Lagrangian formulation yields a pair of nonlinear equations in 
Lf and bf, the fracture length and half-width. By introducing a virtual work analysis, we obtain a single 
equation that can be solved numerically. For non-wall-building fluids, it predicts much higher leakoff rates than 
existing methods. The Lagrangian method also allows nonelastic phenomena, such as plasticity, to be included. 
A practical computer program developed from this theory has been used for more than 10 years to design 
fracturing treatments in oil and gas reservoirs in Canada, California, the midcontinent and Rocky Mountain 
areas, the U.S. gulf coast, the North Sea, and in northern Germany. In most of these applications, it has pre- 
dicted fracture dimensions that have been in line with production experience. Optimization methods based on 
this program led to very large fracturing treatments in low-permeability gas sands that were forerunners of ’ 
massive fracturing treatments in tight gas sands. Specific examples in which this method was used to design 
fracturing programs in large gas fields in Kansas and Texas are discussed. 

Introduction 
We present here a new approach to the 2D problem of 
fracture propagation based on Lagrangian methods. The 
Lagrangian formulation has been applied to a variety of 
problems in physics and chemistry. l-3 To the best of our 
knowledge, however, this is the first application to frac- 
ture mechanics. 

The Lagrangian formulation is based on the classical 
form of Lagrange’s equations. As applied here, it 
produces a basic equation that expresses the balance be- 
tween work expended and work done in propagating a. 
2D crack. 

Existing theories of crack propagation have all been de- 
veloped by the application of equations from classical 
elasticity theory. This approach assumes linear elastic be- 
havior of the reservoir rock and ignores surface energy 
considerations at the crack tip and plastic deformation ef- 
fects. Leakoff, if it is included, is treated as an indepen- 
dent process and merged with the crack propagation 
problem by iterative methods that assume self-consistency. 
Some well-known examples of this approach have been 
presented by Zheltov and Khristianovich,4T5 Perkins and 
Kern, 6 Nordgren,’ Geertsma and de Klerk, * Daneshy, 9 
Le Tirant and Dupuis, ‘O and Cleary. “,I2 Geertsma and 
Haafkens I3 have compared many of the results of these 
theories. 

A more general approach, the Lagrangian method is 
not restricted to elastic behavior, and leakoff can be in- 
cluded as an integral part of the formulation. We include 
leakoff by assuming a piston-like displacement of com- 
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pressive reservoir fluid by an incompressible fracture fluid 
filtrate with a moving boundary between the two. 

The Lagrangian formulation yields a pair of nonlinear 
differential equations in fracture length Lf and fracture 
half-width bf, which are reduced to a single equation in 
Lf by introduction of a virtual work analysis. This equa- 
tion can be solved numerically and can be used with other 
relations to obtain fracture dimensions and injection pres- 
sure as a function of time at constant injection rate. Exper- 
imental laboratory measurements reported previously I4 
confirm basic results obtained from such computations. 

The Lagrangian formulation presented here has been 
used for many years in our field operations to predict frac- 
ture dimensions. It has provided a means to plan and to 
optimize fracture treatments in a variety of field opera- 
tions. Some specific field applications will be discussed. 

The Lagrangian Formulation 
The usual form of Lagrange’s equations from classical 
mechanics is I5 

d aL 
(-> 

aL _ 
ii ag', 

-G=Qi, . . . . . . . . . . . . . . . . . . . . . 

where L = Ek -E, . Because fracture propagation occurs 
under near static conditions, the kinetic energy term, Ek, 
can be neglected in our application. Qi includes all forces 
that are not derived from a potential function. It can be 
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Fig. l-Two-dimensional fracture of unit height. 

divided into frictional forces derived from a dissipation 
function D and all remaining forces Qi. Thus 

Making these substitutions reduces Eq. 1 to 

_-+==Qi, a-% . . . . . . . . . . . . . . . . . . . . . . . . . . . 
hi 6 

(2) 

(3) 

which is the form of Lagrangian equations we will use. 
We will apply these equations to the problem of 2D frac- 

ture propagation. The assumed fracture geometry is shown 
in Fig. 1. The fracture has constant height along x and 
constant width along z over its height. Thus the problem 
is assumed to be one of plane strain in the x-y plane. 
We choose two coordinates, q I =Lf and q2 =bf. We as- 
sume that the fracture extends from -Lf to Lf and that 
its width is given by 

b=2bff =2bff(LD). . . . . . . . . . . . . . . . . . . (4) 

The function f (LD) specifies the shape of the crack. 
It has the following properties: f( -LD)=~(L~); f(0) = 1; 
f( 1) =O; and f is monotone for 0 5 LD < 1. Because of this 
symmetry, we need to consider only the half-plane x> 0 
in Fig. 1. 

In this case, the Lagrangian equations are 

aE, aD 
-+ai=Q, . . . . . . . . . . . . . . . . . . . . . . . . 
Jr, f 

and 

aE, aD 
-ta6=Q2. . . . . . . . . . . . . . . . . . . . . . . . . 

abf f 
. (5b) 

(54 

To apply these equations, we must find the potential func- 
tion E,, the dissipation function D, and the generalized 
forces Ql and Q2 for the fracture in Fig. 1. These are 
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derived in Appendix A for the simplest case of a Newto- 
nian fracture fluid in an elliptical crack without leakoff. 

In this simplest case, E,, D, and Qi have easily rec- 
ognized physical meanings. The potential energy E, is 
the work required to build up an internal pressure in the 
crack volume. D is the rate of energy dissipation caused 
by frictional forces arising from fluid flow down the crack. 
The generalized forces Ql and Qz include all of the 
forces required to increase the crack volume and to gener- 
ate new crack surface at the fracture tip. 

Expressions for E,, D, Q I , and Q2 are given by Eqs. 
A-5, A-15, and A-23. Substituting these results in Eqs. 
5a and 5b gives the basic differential equations 

Lf %f 
6/.44+B)- Lfif 

bf2 
+6&4+2B+C)- 

bf 

=2bp,bf -E . . . . . . . . . . . . . . . . . . . . . (6) 

and 

2Kybf +6pA 
Lf%f Lf 2i.f 
- +6~(A+B)- 

bf3 bf2 

=2pp,Lf. . . . . . . . . : . . . . . . . . . . . . . . . . .(7) 

We seek solutions to these equations of the form 

Lf=C,P, . . . . . . . . . . . . . . . . . . . . . . . . . . . . .@a) 

bf=C2tm, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(8b) 

pr=c3tr, . *. . . . . . . . . :. . . . . . . . . . . . . . . . . (8c) 

and 

qre =C&. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8d) 

Substitution of Eq. 8 into Eqs. 6 and 7 gives h = %, 
m=V$, r= -Vi,- and s=O, or 

Lf,=Clt”; . . . . . . . .‘. . . . . . . . . . . . . . . . . . . . (9a) 

bf=C2tR, . ,.. . . . . . . . . . . . . . , . . . . . . . . . . . . (9b) 

pe=c3t-‘h, . . . . . . . . . . . . . . . . . . . . . . . . . . .(9c) 

and 

qte =C4. .,. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (9d) 

Thus the form of the solution we have chosen corre- 
seonds to the case of constant injection rate, which is the 
one of practical interest. 

The constants C 1, C2, and C3 are evaluated in Ap- 
pendix B. The results obtained there allow us to express 
Lf, bft and pe as explicit functions of time for the case 
of no leakoff. We also show in Appendix B how these 
results can be used under appropriate assumptions to de- 
rive the width equation obtained by Geertsma and de 
Klerk. 8 



We see from Eqs. 9 that two combinations of variables Leakoff. We include fluid leakoff in the Lagrangian for- 
are independent of time. These are peLf/bf and bf*/Lf. mulation by assuming that the flow rate can be divided 
There are two extreme cases for which these combina- into two parts: qv, which contributes only to the frac- 
tions reduce to simple results, as shown in Appendix B. ture volume, and 91, which contributes only to fluid loss 
For large values of pqte, through the fracture faces. 

PeLf CIC3 K-y 6A+7B+2C 
-= -=- 

bf C2 P ( ) 3A+2B ““.’ 
. (10a) 

q,(x)=q&)+q&c). . . . . . . . . . . . . . . . . . . . . . . (13) 

q&x) is given by Eq. A-10, and we take 

and 
q&)=2 s 

LI 
V(X)dX. . . . . . . . . . . . . . . . . . . . . . . . . (14) 

X 
bf2 Lf -g=d(y) y. . . . . . . . . . (lob) -_ 

For small values of pqte, 

p&f Kr 6Ccqre -=-+ 
bf P P* 

. . . . . . .(lla) 

and 

bf2 E 
-=- 

Lf 
2Ky. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (llb) 

Shape of the Crack. The preceding analysis has assumed 
that the crack shape is given. However, this is not a 
prerequisite for the Lagrangian formulation. The crack 
shape can be determined by methods based on various as- 
sumptions. 

Any strict analysis must account for the Barenblatt con- 
dition at the tip. Barenblatt ‘&I8 showed that, to avoid in- 
finite stress at the crack tip, the fluid front cannot extend 
all the way to the tip. This requires a narrowing, pointed 
tip that prevents fluid penetration. Experimental results 
have confirmed that this analysis is correct. I4 

The exact shape of the crack at the tip and over the rest 
of its length is determined by the fluid pressure distribu- 
tion. A detailed analysis of pressure distribution that ac- 
counts for the Barenblatt condition has been developed. 
For field applications requiring only engineering accura- 
cy, however, the exact shape is not needed. Results of 
detailed analyses show that crack dimensions are not crit- 
ically dependent on exact crack shape. For practical pur- 
poses, deriving an approximate shape based on simplifying 
assumptions is sufficient. 

Here we assume that pressure in the crack is constant 
over its length. Under these conditions, Sneddon I9 has 
shown that the crack shape is elliptic and is given by 

a1 -v*)P,Lf I 
uy(dv = 

w(@v 
Y 

L, dm , . . . . . (124 s 
where 

x(‘)=;j$?$-. . . . . . . . . . . . . . . . . . . (12b) 

In the Lagrangian analysis, this is consistent with set- 
ting y=/3=?rI4, which corresponds to an elliptic shape. 
For routine applications, this condition and the Sneddon 
shape give all the necessary accuracy. 
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We must distinguish between simple fracturing fluids, 
such as water and oil, and gelled fluids, which are wall- 
building. Simple fluids will be considered first. 

We assume that leakoff occurs in accordance with Dar- 
cy’s law with a piston-like displacement of the reservoir 
fluid by the fracture fluid filtrate. The filtrate is taken to 
be incompressible, and the reservoir fluid has compres- 
sibility c. The reservoir fluid is driven at a moving bound- 
ary that we designate D&). 

Taking W to be the fluid displacement and B’ as the 
flow rate per unit area, we have 

ti=c#d,,. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (15) 

In this notation, Darcy’s law is written as 

y=Dc . . . . . . . . . . . . . (16) 

From the theory of elasticity in porous media, we in- 
troduce the relative fluid displacement: 

l=-div W=-E=p+cre. . . . . . . . . . . . . . . (17) 
ay M 

To simplify the leakoff problem, we take the compres- 
sibility of the rock matrix to be negligible compared with 
that of the pore fluid. We show in Appendix C that under 
these conditions. 

{=&p. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(18) 

By analogy to heat flow, we assume that { can be rep- 
resented by a parabolic approximation ’ : ’ 

* (19) 

We let the pressure at the moving boundary be 

PI =p@if7). 
These relationships are illustrated by the pressure dia- 

gram of Fig. 2. Appendix D shows how they lead to the 
following equation for the velocity of leakoft 

Eq. 20 has the same form as the well-known relation 
for the velocity of leakoff given in the literature.*’ 
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Fig. 2-Leakoff model. 

Although the form is the same, the coefficient K in Eq. 
20 has a much different relation to fluid and reservoir 
properties than the constant C, in the literature. Further- 
more, in practical cases, Eq. 20 gives a much higher rate 
of leakoff. Reasons for these differences are discussed in 
Appendix D. 

For wall-building gelled fluids, we assume that the gel 
deposits a layer of low-permeability residue on the frac- 
ture face. As the wall forms, it produces a pressure drop 
p ,,, -pe across it. As a first approximation, we follow the 
usual assumption that there is no pressure drop until a cer- 
tain volume of fluid, the spurt loss Wc, has leaked off; 
then the wall suddenly appears and begins to grow. 

We assume that the pressure drop across the wall is 
proportional to the product of the leakoff rate and the 
volume,of fluid that has passed through the wall. This 
gives 

pw-pe=O, WsWo . . . . . . . . . . . . . . . . . . . . . . (21a) 

and 

p,;-pc=&W-W())cL, W>W,. . . . . ‘... 
J‘Z 

. . (21b) 

Thus the wall is assumed to grow in thickness through- 
out the leakoff period. Fig. 3 shows the pressure diagram 
for this case. Past the wall, it is no different from that 
in Fig. 2. 

Appendix D shows that Eq. 21 leads to the velocity 
relation 

v=& 
AWo+JA2W02+8t(l+A)RJCp, 

. . 
4(t-t,)( 1 +A) 

(22) 

for W> Wo. For WC Wo, the velocity is given by Eq. 
20. The constants Wo and J must be determined ex- 
perimentally. It can be shown that, for practical purposes, 

20 
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Fig. 3-Leakoff model with wall-building. 
1 

WO can be represented by the intercept and ,.( by the 
slope of the straight line obtained at long time by plotting 
filtrate volume through thin wafers vs. &. These con- 
stants are routinely provided by service companies for all 
common fracturing fluids. 

Lagrangian Equations With Leakoff 
To develop the Lagrangian equations with leakoff, we use 
a virtual work formulation. For convenience, let 

Fi=E. 
aii 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..(23) 

Substituting this relation into the Lagrangian equation 
(Eq. 3) and using Eq. A-5, we derive 

F,=Q, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..(24) 

F2 +2Kybf=Q2. . . . . . . . . . . . . . . . . . . . . . . . . . (25) 

Multiplying Eq. 24 by -Lf and Eq. 25 by bf, adding 
the two, and using Eq. A-23, we obtain 

ELf=F2bf-F,Lf+2Kybf2. . . . . . . . . . . . . . . . . (26) 

In Appendix F we show how the virtual work concept 
can be used to find relations between F 1, F2, and Lf,bf, 
and to derive the important relation 

(27) 

This is the basic practical result of the Lagrangian anal- 
ysis. It can be solved numerically for Lf when the pres- 
sure distribution dp/dx is known. With Lf the other 
variables bf and pe can be determined readily. 
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The physics of the crack propagation problem is sum- 
marized concisely by Eq. 27. It can be regarded as a sim- 
ple energy balance expression. The first term is the 
separation energy already defined in terms of (T and &. 
The second term is the energy associated with the gener- 
ation of an internal pressure in the crack volume, account- 
ing for leakoff. The sum of these terms represents work 
put into the process of crack propagation. It must equal 
the work done in producing the crack, which is the last 
term. 

Evaluation of Pressure Distribution 
To generalize the problem of determining 13p/dx, we must 
consider both non-Newtonian and Newtonian fluids. For 
non-Newtonian fluids, we assume the common power-law 
relation. 

; =K’r” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (28) 

Newtonian fluids are represented by the same relation, 
with n = 1 and ,u= l/K’. In our notation, n is the inverse 
of n ‘, the flow behavior index used by service compa- 
nies, but K’ is the same as their consistency index. 

We consider flow between parallel fracture faces un- 
der the pressure gradient dp/ilx. If we take the x axis to 
be midway between the faces, the shear stress distribu- 
tion across width b satisfies the equilibrium condition. 

a7 ap 
-=--==a . . . . . . . . . . . . . . . . . . . . . . . . . . . . ay ax (29) 

This gives a shear’ stress distribution of 

r=ay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (30) 

The fluid velocity v has a profile of the type illustrated 
in Fig. 4. It satisfies the relation 

av 
e’=--. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (31) 

ay 

Integrating Eq. 31 gives the flow rate 

s bl2 Klanb”+2 

4r=2 vdy = 2”+,(n+2). . . . . . . . . . . . . . . . . (32) 

0 

Solving for a = - ap/ax, 

ap 2”+‘(n+2) Iln 
----_ . . . . . . . . . . . . . . . 
ax K'b"+2 qt 

1 (33) 

For Newtonian fluids with n= 1, Eq. 33 reduces to Eq. 
A-8. 

For convenience, we let 

R= [ 2n+;+2q ‘In. . . . . . . . . . . . . . . . . . . . 

From Eqs. 4, 34, A-14, and A-19, we obtain 

t = -Rq, IIn [ vo;;Dj] n+2’n . . . . . . . . . . . (35) 

(34) 

I Y 

t 
- 

WI2 

$ 

Q 
T 

I 

X 

2 
I Fig. 4-Non-Newtonian fluid velocity profile. 

From Eqs. 13 and A-13, we obtain 

qt =2(Lfh’f+bfif)F(LD) +2b&&,f(&,) +qr . . (36) 

Differentiating Eq. A-9 to obtain hf in Eq. 36 gives 
finally 

WD) . vo 
9r= 

if 
--VofpL~f(LU)-+qi. . . . . . . . . 

P Lf 
(37) 

Eqs. 35 and 37 substituted in Eq. 27 give an equation 
in Lf only. This equation can be solved for Lf by straight- 
forward iterative methods. 

qractical Evaluation 
We have developed a number of computer programs for 
solving Eq. 27 and determining Lf,bf and pe as functions 
of time at constant injection rate. The sophistication of 
these programs has been tailored to particular needs. For 
most routine field applications where only engineering ac- 
curacy is required, we use a program with several sim- 
plifying assumptions to reduce computer time. The most 
important of these are assuming the crack shape to be el- 
liptical so that r=/3 and taking the plasticity coefficient 
(II =O. The Q! = 0 assumption must be made with care, but 
it has been found to be appropriate in many reservoirs. 
Measurements of (Y in reservoir rock and the effects of 
plasticity on fracture dimensions are the subject of a 
separate paper. 2 l 

We have shown by Eq. 8 that without leakoff the 
Lagrangian method gives power-law relations in Lb bf, 
and pe vs. time at constant injection rate. This is true to 
a very good approximation but with slightly different ex- 
ponents when there is leakoff present. This is illustrated 
in Fig. 5 where Lf, bf, and pe results obtained from so- 
lutions of Eq. 27 are shown for cases of very large leakoff 
rates with fluid efficiencies CcO.02. 

For non-wall-building fluids, the exponents h, m, and 
r in Eq. 8 decrease with increasing leakoff-i.e., decreas- 
ing C. For C-0, we find h+ %, m+ l/i, and r-+ - %. 

For wall-building fluids, Appendix D shows fluid loss 
through the wall to be the rate-controlling mechanism. 
Factors associated with the moving boundary D!p(t) in 
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Fig. S-Plots of C,, b,, and pe vs. pumping time t obtained from Eq. 27 for cases of very 
large leakoff (low C). 

Fig. 3 are of little consequence. Fluid efficiencies are 
practically independent of fluid and reservoir properties 
apart from _,4 and Wu. 

These trends are very much in line with experimental 
data reported earlier from laboratory measurements of 
fracture propagation in small blocks. I4 Although these 
experiments produced three-dimensional (3D) cracks, the 
results are surprisingly consistent with the 2D Lagran- 
gian theory presented here. 

We have made numerous comparisons between results 
obtained from our Lagrangian method with cz = 0 and those 
obtained from other 2D theories. Experience from these 
comparisons has been compiled over a number of years 
for a great variety of cases. For a=0 and with no leakoff, 
we find good agreement between the Lagrangian method 
and the methods of Zheltov and Khristianovich,4*5 
Geertsma and de Klerk, 8 and Daneshy. 9 Significant dis- 
crepancies do not arise until u exceeds 1 X lo5 erg/cm2 
[l x105mJ/m2] and becomes large onp when E ap- 
proaches 1 x lo6 erg/cm2 [l x 106mJ/m 1. The limited 
data compiled for u from laboratory measurements2* in- 
dicate that cr does not exceed 1 X lo5 erg/cm2 [ 1 X 

lo5 mJ/m2] in more than a few types of well-cemented 
reservoir rock. Thus, according to the Lagrangian anal- 

22 

ysis, fracture propagation in most reservoirs is controlled 
mainly by the elastic energy required to force the frac- 
ture faces apart and not by surface energy effects at the 
tip. This is expected intuitively but has not been demon- 
strated convincingly before. 

When leakoff without wall-building is included, the 
Lagrangian method gives much higher leakoff rates and 
significantly shorter fractures than the methods of Geerts- 
ma and de Klerk8 and Daneshy. 9 This has been demon- 
strated in numerous comparisons with the Daneshy 
program for a variety of field cases. Although fewer com- 
parisons have been done with the Geertsma and de Klerk 
method, it is reported to give results in general agreement 
with the Daneshy program. I3 

When wall-building is included with leakoff, the 
Lagrangian method gives results substantially in agree- 
ment with the Daneshy program. This agreement can be 
viewed as a natural consequence of points discussed earlier 
and of the similar methods of treating the wall-building 
process. In the Daneshy program, fluid loss is matched 
numerically to experimental data on leakoff through thin 
wafers. The same experimental data are used to obtain 
A and Wu in the Lagrangian method. Because fluid loss 
through the wall dominates leakoff in this case, these 
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methods should give about the same rate of leakoff. The 
major remaining difference between the two methods is 
the formulation used to combine fluid loss and crack 
growth. The substantial agreement between the two shows 
that both formulations lead to about the same result. 

The Lagrangian method gives results much different 
from the Perkins and Kern equations6 and the associat- 
ed Nordgren theory. 7 The differences show most notice- 
ably in the exponent r, which has an opposite sign in 
results computed by the two methods. These discrepan- 
cies are well-known from past comparisons of the Perkins- 
Kern equations with 2D theories. They have been attribut- 
ed to fundamental differences between 2D and 3D the- 
ories. It should be noted, however, that laboratory 
experiments with 3D fracture propagation have agreed 
much better with 2D theories than with the Perkins and 
Kern6 or Nordgren7 theories. The most definitive test 
is in the sign of r, which is always negative in the labora- 
tory experiments. I4 

The method used here of combining the Lagrangian for- 
mulation with a virtual work analysis provides a power- 
ful means of treating the fracture propagation problem. 
The Lagrangian formulation can be used to separate the 
problem into its various parts. E&h of these parts can 
be treated individually by completely analytic methods. 
Then, through the virtual work concept, they can be 
recombined into the central problem. Elastic deformation, 
separation energy, crack shape, fluid flow along the crack, 
and leakoff are all parts of the problem that have been 
treated in this way. All are recombined by the virtual work 
analysis in Eq. 27. The result is a largely analytic analy- 
sis that does not require the use of crude and uncertain 
finite element methods at any step. 

Field Applications 
The Lagrangian method described here has been used in 
various forms for the design of fracturing treatments for 
more than 10 years. Applications have ranged from sim- 
ple estimates of fracture dimensions and fluid/sand 
volumes to sophisticated economic optimization programs 
for large fields with fracturing treatments in many wells. 
The method has also been extended to investigate frac- 
ture extension in waterflood operations. In most of these 
applications, the predicted fracture dimensions have been 
in line with production experience before and after frac- 
turing except in unusual cases. Some of the more impor- 
tant field applications are listed in Table 1. 

The Pembina application in Table 1 made use of small- 
volume fracture treatments to improve waterflood oper- 
ations in the Cardium oil sand. Hundreds of producing 
wells were fractured with a crosslinked gel carrying 12 
to 15 lbm/gal [1438 to 1797 kg/m31 sand at 20 to 30 
bbl/min [0.05 to 0.08 m3/s]. The main purpose was to 
provide communication over the complete Cardium sand 
interval. The Lagrangian program predicted no more than 
two-fold productivity increases caused by fracturing as 
opposed to four- to five-fold improvements forecast by 
service company prograins. A 1.9-fold improvement was 
obtained as the average for more than 100 cases. 

The Panama/Council Grove application resulted in very 
large treatments carrying 2 lbm/gal [240 kg/m31 sand in 
slick water at rates from 70 to 150 bbl/min [O. 19 to 0.4 
m 3 /s] . Early treatments designed by service companies 
used only 25,000 lbm [ 11 340 kg] of sand at 0.5 lbm/gal 
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TABLE l--SOME IMPORTANT FIELD APPLICATIONS 
OF LAGRANGIAN METHODS 

Field Location 

Pembina Alberta, Canada 
Panama/Council Grove Southwestern Kansas 
Canadian Texas panhandle 
Lasater East Texas 
Various gulf coast wells Texas 
Tip-Top Midwestern Wyoming 
Oldenburg West Germany 
Piceance basin Western Colorado 
South Belridge Kern County, CA 

[60 kg/m3]. Based on the Lagrangian method, an eco- 
nomic optimization program called for treatments in the 
250,000-lbm [ 11 340-kg] range at 2 lbm/gaI and predicted 
dimensions that would give a six- to seven-fold improve- 
ment over the small treatments. The larger treatment was 
carried out in a well adjacent to a small treatment well 
and gave production results very consistent with this pre- 
diction. The large treatments have since been used suc- 
cessfully in hundreds of wells in this field. 

The Canadian gas field application was very similar to 
the Panama/Council Grove case. In early wells, service 
companies designed small treatments with less than 50,000 
lbm [22 680 kg] of sand to be carried in thin guar fluids 
at 20 to 30 bbl/min [0.05 to 0.08 m3 /s]. Based on the 
Lagrangian method, the treatment size was increased to 
300,000 lbm [136 080 kg] at 3 lbm/gal [260 kg/m31 and 
50 to 60 bbl/min [O. 13 to 0.16 m3/s]. Following success- 
ful experience with this design in the first few wells, the 
treatment size was increased in later wells to as much as 
500,000 lbm [226 800 kg]. The large treatments were 
used in more than 25 wells in the field with calculated 
absolute open flows ranging fom 8 to 60 MMcf/D 
[227x lo3 to 1700x lo3 m3/d]. 

Experience in the Panama/Council Grove and Canadi- 
an fields led to the concept of larger treatments in low- 
permeability sands than had been considered practical be- 
fore. Because of their routine success, these treatments 
served as forerunners of very large fracture treatments 
carried out in the Lasater and Tip Top fields and later 
in the Oldenburg and Piceance Creek fields, which are 
described elsewhere. 23,24 

The U.S. gulf coast wells included in Table 1 were 
selected from a variety of gas fields with completions in 
the Frio, Wilcox, and similar sands. These treatments 
were designed principally to remove skin damage evalu- 
ated from pressure buildup analyses in partially depleted 
wells. The Lagrangian method was used with an economic 
optimization program to determine treatment size on the 
basis of optimum fracture length beyond the skin damage. 

. 

In the South Belridge field, the Lagrangian method was 
applied to fracturing long, vertical, oil-producing inter- 
vals of diatomaceous earth. These treatments were de- 
signed to be near-massive on a vertical scale but modest 
on a fracture-length scale. Details of this work are dis- 
cussed elsewhere. 25 

Conclusions 
The Lagrangian method has been applied successfully to 
the problem of 2D fracture propagation. This method of 
analysis has introduced some new concepts and led to a 
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practical method of calculating fracture dimensions for 
field operations. 

The Lagrangian formulation provides a means of 
separating the crack propagation problem into parts that 
can be treated individually by largely analytic methods. 
These parts then can be recombined by mean of a virtual 
work analysis. Leakoff, fluid flow and pressure distribu- 
tion along the crack, shape of the crack, elastic energy, 
and separation energy associated with crack growth can 
be treated in this way. 

Leakoff has been considered as a piston-like displace- 
ment of compressible reservoir fluid by an incompressi- 
ble fracture fluid filtrate in accordance with Darcy ‘s law. 
This analysis, incorporated into the Lagrangian formula- 
tion, predicts much higher leakoff rates than convention- 
al methods, provided the fluid is not wall-building. For 
wall-building fluids, leakoff through the wall is the rate- 
limiting step. In this case the Lagrangian method predicts 
fluid loss rates that agree with conventional methods based 
on spurt loss and long-time rate of filtration through thin 
wafers. 

Associated with fracture propagation is an elastic defor- 
mation energy and a separation energy. The latter is 
almost negligible unless the Griffith surface tension is 
large or unless there is significant plastic deformation. 
The surface tension must exceed 1 X lo5 erg/cm2 
[l x 105rn.Ilm2] to be important. On the basis of limited 
data, this appears to be uncommon in reservoir rock. 
Therefore, excluding cases of plastic behavior, fracture 
propagation is controlled mainly by the elastic energy re- 
quired to force the fracture walls apart and has little to 
do with surface energy effects at the tip. 

In the absence of leakoff, the Lagrangian equations 
predict power-law relations in fracture length Lf, frac- 
ture half-width bf, and injection pressure pe vs. time. 
The power-law exponents are h = % for Lf, n = % for be 
and r= - % for pe . When leakoff does exist, power-law 
relations are still found to a good approximation, but the 
exponents change with fluid efficiency C. As C+O, 
m+ i/2, n+ 94, and r+ - ?A. These trends agree with lab- 
oratory results obtained in 3D fracturing experiments. 

Field applications of the Lagrangian method have gener- 
ally predicted fracture dimensions consistent with produc- 
tion data except in unusual cases. 

Nomenclature 
a,= notation used for convenience, defined by 

Eq. 29 
A = proportionality constant for wall-building 

fluid defined by Eq. 21 
A, B, C = constants identified by Eq. A-16 

b = fracture width, function of x and t 
b, = fracture width at entrance, function of t 

only 
bf = fracture half-width at entrance 

c = compressibility of reservoir fluid 
Cl, c2, 

Cs, CA = constants appearing in Solutions 8 to 
Lagrangian Eqs. 6 and 7 for cases of 
no leakoff 

6 = constant associated with velocity of 
filtration into empty pores, defined by 
Eq. D-22 
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G2 = constant associated with velocity of fluid 
flow resisted by compression of 
reservoir fluid, defined by Eq. D-23 

6, = composite fluid loss coefficient obtained 
from &$ and G. by Eq. D-24 

D = dissipation function 
Dd = penetrat ion depth associated with 

compression of reservoir fluid by 
fracture fluid front illustrated in Fig. 3 

Ds = penetration depth of incompressible 
fracture fluid filtrate beyond fracture 
face illustrated in Fig. 3 

e = dilatation 
.E = 

Ek,= 

E, = 

f(LD) = 
Fi 7 

separation energy, defined by Eq. A-21 
kinetic energy of system 

potential energy of system 
shape function, defined by Eq. 4 
notation used for convenience in virtual 

work analysis, defined by Eq. 23 
shape function, defined by Eq. A-11 
shear modulus 

WD) = 

G= 
SF= 

h= 

H= 

k= 
K= 

K’ = 

L= 

LD = 

Lf = 

m= 

M= 
M, = 

n= 

n’ - - 

P= 
Pe = 
Pw = 

Pm = 

PI = 

9i = 

41 = 

qt = 

4re = 

notation used for convenience, defined by 
Eq. B-5 

exponent appearing in Solutions 8 to 
Lagrangian Eqs. 6 and 7 for no leakoff 

notation used for convenience, defined by 
Eq. B-6 

permeability .of reservoir rock 

elastic constant defined by Eq. A-3 
constant in power-law relation assumed 

for non-Newtonian fluids in Eq. 28 
Lagrangian function given by difference 

between kinetic and potential energy of 
system 

dimensionless distance along crack 
fracture half-length from wellbore to tip 
exponent appearing in Solutions 8 to 

Lagrangian Eqs. 6 and 7 for no leakoff 
poroelastic coefficient defined in Ref. 21 
poroelastic coefficient defined by Eq. C-5 
exponent in power-law relation assumed 

for non-Newtonian fluids in Eq. 28 
flow behavior index, the inverse of n 

fluid pressure in fracture as function of x 
fluid pressure at fracture entrance 
fluid pressure impinging on wall formed 

by wall-building fluid 
far-field stress 

fluid pressure at moving boundary be- 
tween fracture fluid filtrate and 
reservoir fluid as illustrated in Fig. 3 

generalized coordinates for system 

portion of qt contributing to leakoff only 

total flow rate in fracture, function of x, t 

total flow rate into fracture entrance; 
function of t only 

qv = portion of qr contributing to fracture 
volume only 

SPE Production Engineering, January 1986 



Qi = 

r, s = 

R= 

t= 
to = 
u= 
U= 

uy = 

v= 

v= 
v, = 
w= 

w, = 
w= 

WC = 

wp = 

x, y, z = 

Y= 
z= 
Ck!= 

P= 
Y= 
r= 
6’ = 

r= 

i-1 = 

rl= 

K= 

X= 
A= 

CL= 

PI = 

P2 = 

Y= 

t= 

(T= 

Qi force’s not derived from a dissipation 
function 

forces not derived from a potential 
function 

exponents appearing in Solutions 8 to 
Lagrangian Eqs. 6 and 7 for no leakoff 

notation used for convenience, defined by 
Eq. 34 

time variable 
time when crack reaches Point x 
displacement as function of x 
rock matrix displacement vector 
displacement as function of x at y =0 

fluid velocity, function of x only for 
Newtonian fluid without leakoff; 
function of x and y for non-Newtonian 
fluid or for leakoff 

volume of fracture from x to Lf 
volume of fracture from entrance to Lf 

fluid displacement associated with leakoff 
spurt loss for wall-building fluid 
virtual work associated with generalized 

forces Qi 
portion of W caused by extending the 

crack 
portion of W done by fluid pressure in 

increasing crack volume 
Cartesian coordinates oriented as shown 

in Fig. 1 
Young’s modulus 
constant defined by Eq. B-4 
poroelastic constant, defined in Ref. 27 
shape constant, defined by Eq. A-14 
shape constant, defined by Eq. A-6 
plasticity coefficient, defined by Eq. A-21 
shear rate in non-Newtonian fluid 

relative fluid displacement, defined by 
Eq. 17 

value of { at moving boundary; y= Dfl 
used in parabolic approximation, 
Eq. 19 

dummy variable used in Sneddon Eq. 
c-12 

coefficient associated with velocity of 
leakoff defined by Eq. 20 

Lame constant 
notation used for convenience, defined by 

Eq. D-26 
viscosity of Newtonian fluid in fracture 
viscosity of reservoir fluid ahead of 

moving boundary DiJ(t) as in Fig. 3 
viscosity of fracture fluid filtrate behind 

moving boundary Difl(t) as in Fig. 3 
Poisson’s ratio 
notation used for convenience, defined by 

Eq. D-18 
surface tension associated with brittle 

crack propagation as originally defined 
by Griffith 

C= fluid efficiency given by qv/(qv +qt) 

7= shear ‘stress in non-Newtonian fluid 

4= porosity of reservoir rock 

X= dummy variable in Sneddon Eq. 12 

ti= shape function defined by Eq. A-2 

Acknowledgments 
We wish to thank R.E. Aikin and A.B. Craig for field 
and laboratory assistance; E.L. Cook, J.L. Fitch, T.C. 
Vogt, and M.K. Strubhar for numerous contributions in 
discussions; and Mobil Research and Development Corp. 
for permission to publish this paper. 

References 
I. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

Biot, M.A.: “New Variational Lagrangian Irreversible 
Thermodynamics with Application to Viscous Flow, Reaction- 
Diffusion and Solid Mechanics,” Advances in Applied Mechanics, 
Academic Press, New York City (1984) 24, 1-91. 
Biot, M.A.: Variational Principles in Heat Transfer, Oxford Press, 
London (1970). 
Biot, M.A.: “Non-Linear Effect of Initial Stress in Crack Propa- 
gation Between Similar and Dissimilar Orthotropic Media,” Applied 
Math. Quart. (1970) 30, 379-406. 
Zheltov, Y.P. and Khristianovitch, S.A.: “Hydraulic Fracture of 
an Oil-Bearing Bed,” Izvestia Akademii Nauk S.S.S.R., 07N (1955) 
No. 5, 3-41. 
Khristianovitch, S.A. and Zheltov, Y.P.: “Formation of Vertical 
Fractures by Means of Highly Viscous Liquid,” Proc., Fourth 
World Pet. Cong., Rome (1955) Sec. II, 579-66. 
Perkins, T.K. and Kern, L.R.: “Widths of Hydraulic Fractures,” 
J. Pet. Tech. (Sept. 1961) 937-49; Trans., AIME, 222. 
Nordgren, R.P.: “Propagation of a Vertical Hydraulic Fracture,” 
Sot. Pet. Eng. J. (Aug. 1972) 30614; Trans., AIME, 253. 
Geertsma, J. and de Klerk, F.: “A Rapid Method of Predicting 
Fracture Width and Extent of Hydraulically Induced Fractures,” 
J. Pet. Tech. (Dec. 1969) 1571-81; Trans., AIME, 246. 
Daneshy, A.A.: “On the Design of Vertical Hydraulic Fractures,” 
J. Pet. Tech. (Jan. 1973) 83-97: Trans.. AIME, 255. 
Le Tirant, P. and Dupuis; M.: “Dimensions of the Fractures Ob- 
tained by Hydraulic Fracturing of Oil Bearing Formations,” Rev. 
Inst. Franc. Pet. (Jan. 1967) 44-98. 
Cleary, M.P.: “Rate and Structure Sensitivity in Hydraulic 
Fracturing of Fluid Saturated Porous Formations,” Proc., 1979 
U.S. Rock Mech. Symp., U. of Texas, Austin (June) 127-42. 
Cleary, M.P.: “Comprehensive Design Formulae for Hydraulic 
Fracturing,” paper SPE 9259 presented at the 1980 SPE Annual 
Technical Conference and Exhibition, Dallas, Sept. 21-24. 
Geertsma, J. and Haatkens, R.: “A Comparison of the Theories 
for Predicting Width and Extent of Vertical Hydraulically Induced 
Fractures,” J. Eng. Res. Tech. (March 1979) 101, 8-19. 
Medlin, W.L. and Masse, L.: “Laboratory Experiments in Fracture 
Propagation,” Sot. Pet. Eng. J. (June 1984) 256-68. 
Flugge, W.: Handbook of Engineering Mechanics, McGraw-Hill 
Book Co. Inc., New York City (1962) 23-35. 
Barenblatt, G.I.: “On Certain Problems of the Theory of Elasticity 
that Arise in the Investigation of the Mechanism of Hydraulic 
Rupture of an Oil-Bearing Layer,” Prikladnaia Matematika i 
Mehanika Akademii Nauk S.S.S.R. (1956) 20, 475-86. 
Barenblatt, G.I.: “An Approximate Evaluation of the Size of aCrack 
Forming in Hydraulic Fracture of a Stratum,” Izvestia Akademii 
Nauk S. S. S.R., OTN (1957) No. 3, 1980-82. 
Barenblatt, G.I.: “Equilibrium Cracks Forming During Brittle 
Fracture,” Dokladi Akademii Nauk S.S.S.R. (1959) 127, 47-50. 
Sneddon, I.N. and Lowengrud, M.: Crack Problems in the Classical 
Theory @Elastici& J. Wiley & Son<, Inc., New York City (1969) 
28. 
Howard, G.C. and Fast, C.R.: Hydraulic Fracturing, Monograph 
Series, SPE. Richardson. TX (1970) 2, 34. 
Medlin, W.L. and Ma&, L.:‘ “Plasticity Effects in Hydraulic 
Fracturing,” paper SPE 11068 presented at the 1982 SPE Annual 
Technical Conference and Exhibition, New Orleans, Sept. 26-29. 
Perkins, T.K. and Krech, W.W.: “Effect of Cleavage Rate and 
Stress Level on Apparent Surface Energies of Rock,” Sot. Pet. 
Eng. J. (Dec. 1966) 308-14; Trans., AIME, 237. 

SPE Production Engineering, January 1986 25 



23. 

24. 

25. 

26. 

27. 

28. 

Slusser, M.L. and Rieckmann, M.: “Fracturing Low Permeable 
Gas Reservoirs,” Erdoel-Erdgas Zeitschrijj (March 1976) 92. 
Strubhar, M.K., Fitch, J.L., and Medlin, W.L.: “Demonstration 
of Massive Hydraulic Fracturing, Piceance Basin, Colorado,” paper 
SPE 9336 presented at the 1980 SPE Annual Technical Conference 
and Exhibition, Dallas, Sept. 21-24. 
Strubhar, M.K. et al.: “Fracturing Results in Diatomaceous Earth 
Formations, South Belridge Field, California,” J. Pet. Tech. (March 
1984) 495-502. 
Mathews, J. and Wa1ker;R.L.: Mathematical Methods of Physics, 
W.A. Benjamin Inc., New York City (1965) 73. 
Biot, M.A.: “Mechanics of Deformation and Acoustic Propaga- 
tion in Porous Media,” J. Appl. Phys. (April 1962) 33, 1482-98. 
Williams, B.B.: “Fluid Loss from Hydraulically Induced 
Fractures,” J. Pet. Tech. (July 1970) 882-88; Trans., AIME, 249. 

Appendix A Substituting Eq. 4 and letting 

We consider the crack of Fig. 1 for the case of a Newto- 
nian fracture fluid without leakoff. The elastic potential 
energy in the half-space x>O is 

F(LD) = j’ f(L,,)dLD . . . . . . . . . . . . . . . . . . . . (A-l 1) 

L I) 

E,= 
L, /> s s pdb&. . . . . . . . . . . . . . . . . . . . . . . ..(A-1) 

0 0 

From elasticity theory, the pressure, p, can be written as 

bf 
p=KL-$(LD), . . . . . . . . . . . . . . . . . . . . . . . . . .(A-2) 

f 

where $ depends on the shape of the crack. For simplici- 
ty, we assume the shape is elliptical. In this case, 

Y 
K= 2(1 _u2) . . . . . . . . . . . . . . . . . . . . . . . . . . . (A-3) 

and 

$(I!.,)= 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(A-4) 

Substituting Eqs. 4, A-2, A-3, and A-4 into Eq. A-l 
yields 

E,, =Kybf=, . . . . . . . . . . . . . . . . . . . . . . . . . . . (A-5) 

with 

y= 
s 

‘f(L&$(L&d&,. . . . . . . . . . . . . . . . . . . (A-6) 

0 

The dissipation function is half the power dissipated 
over the crack length. 

D=-% s [,I ap 
q,(x)--p. . . . . . . . . . . . . . . . . . . 

0 
(A-7) 

Substituting Eq. A-8 into A-7 gives 

D=6p - 
s 

LI q,2(x) 

0 

b3 dx. . . . . . . . . . . . . . . . . . . . . . (A-9) 

To express this result in terms of the Lagrangian coor- 
dinates, q; and ii, we express q, in terms of the time 
derivative of the crack volume. 

y,W=li=2;[L’bdx. . . . . . . . . . . . . . . . . . . 

’ I 

gives 

q,(x)=2(Lf$+b$f)F(M 

+bfifLDf(LD), . . . . . . . . . . . . . . . . . . . . (A-12) 

or at the crack entrance, 

q,(0)=q,<,=2/3(Lf6f+bfif), . . . . . . . . . . . . . . (A-13) 

where 

P=F(O)= j’f(L&. . . . . . . . . . . . . . . . . . . (A-14) 

0 

Substituting Eqs. A-12 and 4 into Eq. A-9 gives the 
needed expression for the dissipation function. 

DE 3pLf - [A(Lfbf + bfif> = 
bf3 

+2B(Lfbf+bfif)bfif+Cbf2if2], . . . . . . . (A-15) 

where 

A= s ’ F’(LD) 
----dLD, 

0 f”@D) 

B= s ’ LDF(LD) 

o f=@D) 
aD3 

and 

We assume Poiseuille flow in the fracture, so 

q,(&g’_“ap 12~ ax. . . . . . . . . . . . . . . . . . . . . . . . (A-8) 
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The generalized forces Qi can be derived from the 
virtual-work principle. A virtual work associated with 
these forces can be written as 

dYp=Q,dLf +Q2dbf. . . . . . . . . . . . . . . . . . . . (A-17) 



This virtual work can be separated into two parts: that 
done by the fluid pressure in increasing the crack volume, 
Y/:, , and that done in extending the crack, Ye.. We have 

) . . . . . . . . . . . . . . . . . . . . (B-5) 

d ‘//;: =p,dVo, . . . . . . . . . . . . . . . . . . . . . . . 

with 

.(A-18) 
and 

E 
Hz.-- 2Ky. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (B-6) 

vo =q,<,r= s Ll I 

bdx=2Lfbf f(L&iLn s Making these substitutions in Eq. B-3 and solving for 

0 0 
Z, we derive 

=2/3Lfbf, . . . . . . . . . . . . . . . . . . . . . .(A-19) Z=‘h(H+~H*+4.G’). . . . . . . . . . . . . . . . . . . . (B-7) 

where we have used Eq. 4 and Eq. A-14. Substituting Eq. 
A-19 into Eq. A-18 gives 

d ‘/:, =20p<,(bfdLf+Ljdbf). . . . . . . . . . . . (A-20) 

d’//:.= -EdLJ= -(2a+F)dLf, . . . . . . . . . . . (A-21) 

where E is a separation energy associated with the Griffith 
surface tension u and a constant I’ that accounts for plas- 
tic deformation of the reservoir rock, acoustic radiation, 
etc. 

The virtual work associated with Qt and Q2 can now 
be written 

d ‘//‘=~(2~p,by-E)dL,~+2/3peL,+db,f. . . . . . . . (A-22) 

Comparing Eq. A-23 with Eq. A-17 shows that 

Q I =Wp,bf-E 

and 

Q2 =2&L,. . . . . . . . . . . . . . . . . . . . . . . . (A-23) 

Appendix B 
To evaluate the constants Ct , C2, and C3 in Eq. 9, we 
begin by integrating Eq. A-13. 

q,c,r=2/3j’(L+6~+bfi,Jdt=2fiLfb,~. . . . . . . . (B-1) 

0 

Eqs. B-2 and B-4 give 

c,=[(.$2;]” . . . . . . . . . . . . . . . . . . . 

and 

c*= ( > q,,z ‘%. . . . . . . . . . . . . . . . . . . . . . . . 
20 

(B-8) 

(B-9) 

Substituting Eq. 9 into Eq. 7 and using Eqs. B-8 and 
B-9, we obtain 

+f (/l++B) ($)Z”z‘% . . . . . . (B-10) 

As a practical illustration of these results, we show that 
conditions can be chosen for which the Lagrangian for- 
mulation gives the width equation obtained by Geertsma 
and de Klerk’ for no leakoff. We take E=O, which 
reduces Eq. B-7 to 

making Eq. 10 valid. For an elliptical crack, 

Using Eq. 9, we get 

qt, 

f(LD)=m. . . . . . . . . . . . . . . . . . . .(B-11) 

K and $(LD) are then given by Eqs. A-3 and A-4, and 

C,C?=-. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (B-2) 
y=P=7r/4. Letting L~=cos 0, we derive from Eq. A-16 

20 
1 

B=_ 
s 

~‘2 (e-sin 8 cos B)COS e 

SubstitutingiEq. 9 into Eqs. 6 and 7 and eliminating 
de=O. 152 

2O 
sin 8 

pc, yields and 

ClC2 
?(3B+2C)- 

c23 

C3 
2 +E=2Ky-. . . . . .(B-3) 

CIC2 

K/2 

c= s cos*ede=0.785. . . . . . . . . . . . . . . . . . 

0 

(B-12) 

We let 
Substituting these results into the second part of Eq. 

10 and taking v=O.25, we obtain 

c*3 
z=_ c,c2) . . . . . . . . . . . . . . . . . . . . . . . . . . . (B-4) !%.+2.,&!$ . $3-13) 
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This result agrees with the width equation given by 
Geertsma and de Klerk* for unit fracture height and is 
limited to cases in which the separation energy, E, is 
small. For reservoir rocks with significant surface ener- 
gy, u, it becomes a poor approximation. 

Appendix C 
From the theory of elasticity in porous media*’ we make 
use of the following relations: 

GV*u+(G+X+c-w*M)grad e=aMgrad {, . . .(C-1) 

(C-2) 

(2G+X+a*MV*e=aM)V*{, . . . . . . . . . (C-3) 

a< kM, 
-=-v*5‘, . . . . . . . , . . . . . . . . . /. . . . 
at 6 

(C-4) 

1 
M= 

$c-+~(l_a)-afgl_& .......“.. 
. (C-5) 

and 

MC= 
M(X+2G) 

X+2G+a2M. . . . . . . . . . . . . . . . . . . (C-6) 

Substituting Eq. 17 into Eq. C-4 gives 

GV*u+(X+G)grad e=a! grad P. . . . . . . . . .(C-7) 

Integration of this equation gives 

G div u+(h+G)e=olp, . . . . . . . . . . . . . . . . . .(C-8) 

where the constant of integration has ken absorbed into P. 
Eq. C-7 reduces to 

(X+ZG)e=olp. . . . . . . . . . . . . . . . . . . . . (C-9) 

Substituting Eq. 17 again gives 

(h+ZG)(Mr-p)==o12Mp. . . . . . . . . . . . . . (C-IO) 

Solving for P and using Eq. C-5 yields 

p=M,.r. , . . . . . . . . . . . . . . . . . . . . . . . . . . . . (C-11) 

We assume the compressibility of the matrix to be negligi- 
ble, so 

K=O. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..(C-12) 

Substituting Eq. C-12 into Eqs. C-5 and C-6 gives 

M=M,.=I. . . . . . . . . . . . . . . . . . . . . , , . . (C-13) 
+c 

Substituting Eq. C-13 into Eq. C-11 gives Eq. 18. 
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Appendix D 
Substituting the parabolic approximation (Eq. 18) into Eq. 
17 and integrating yields 

u+(Dc. fDif -y). . . . . . . . . . . . . . . . . . . (D-l) 

At y=Dvl, we obtain 

From Eq. 18, 

2&j, 
s’(D&== I(D&+~WD~). . . . . . . . . . .(D-3) 

c.P 

We also have, from Eq. 17, 

3: =c$d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (D-4) 

Using Eqs. D-4, D-3, and 17 in Eq. D-2 gives 

k(D,,)=fc4(D,,d, +3P& +P &). . . . . (D-5) 

At y=Difl, Eqs. 18 and 19 give 

aP 

(-> 

2Pl 
--. . . . . . . . . . . . . . 

av !=D,,, = D<f/ 

From Eq. 16, Darcy’s law reduces to 

243 I 
ti(Ditl)=--- LL,D,p. . . . . . . . . . . . . . . . . . 

Equating Eqs. D-5 and D-7, we obtain 

Darcy’s law for the filtration process is 

k(p, -P I 1 1 
f&Q)= . . . . . . . . . . . . . . 

cczDij1 

Equating Eqs. D-9 and 15 gives 

. . . . . . . . . . . 

and equating Eqs. D-7 and 15 gives 

. . 

. . 

. . . . (D-6) 

. . . . (D-7) 

. . . . (D-8) 

. . . . . (D-9) 

. . . . (D-10) 

2k 
-p, =$D<.&,. . . . . . . . . . . . . . . . . . . . . . (D-11) 
CLI 
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Eqs. D-8, p-10? and D-l 1 provide three differential Integration of Eq. D-10 then gives 

equations in Difl, DC., and p ,, which must be solved for 
Dg. Eqs. D-10 and D-11 reduce to 

D$ Ir.l(P,-Pl) 

Dlfl=d% [ ‘(‘;‘;‘I. . . . . . . . . . . . .(D-19) 

-= ) . . . . . . . . . . . . . . . . . . . . (D-12) 
D,fl G2P I Using this result in Eq. 15 gives Eq. 19. We find 4 by 

substituting Eq. D-18 into Eq. D-17 to get 

which, by differentiation, gives 
2CP&2 

2Dij7 Dcp 

> 

2Pdifl h-P,)& 
[2+(l-cpJ~=---, . . . . . . . . . . . . ..‘..(D-20) 

-+- p’,+------ 3cLl 

@I CL2 PI p2 
from which 

D,pd<, =- . . . . . . . . . . . . . . . . . . . . . . . 
CL2 

(D-13) QP,r.c2 
(cp,-1)2+-- 1 3PI .. 

. (D-21) 

Combining Eq. D-13 with Eqs. D-l 1 and D-8, we ob- 
tain the differential equations 

2kp I 
iQ,=- ~D,p ) . . . . . . . . . . . . . . . . . . . . . . . . (D-14) 

It is important to consider two special cases: when filtra- 
tion eriters empty pores and when the fracture fluid and 
reservoir fluid are the same, thus eliminating the moving 
boundary. In the first case, it is easily shown that, for 
pc constant, Eq. 15 and 16 give 

d,= k= J k4p c 
= 

2P.(r-~o) 
& . . . . . . . . . . . . (D-22) 

6k - 4 
-(1-~PI)(pc-P I)+< 

4P12 
-Dcp 2i<, - - 

>I 

In the second case, the well-known result is 
P I 

PIP2 P2 P2 
, , 

k=p, 4 WC 
?TCL(I_to) = 2 . . . . . . . . . . (D-23) 

These results have been used in the literature for many 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (D-15)‘ years to compute a leakoff coefficient C, from the re- 

lation 
and 

1 1 1 

d,= 
c=-+-. . . . . . . . . . . . . . . . . . . . . . ..(D-24) 

I Cl c2 

qbkDcp ‘p <, 
-- 

P2 

We have not found a general solution for these equa- 
tions but particular solutions can be obtained by numeri- 
cal integration. For constant pr, the solution is found 
easily. In this case, it can be shown that the only solution 
satisfying the initial conditions is the one for p 1 constant. 
Then Eq. D- 15 reduces to 

2 
(l-cp,)=-3cp,~=o. . . . . . . . . . (D-17) 

PI CLI 

For convenience, we let 

Williams28 has derived a different relation, 

1 1 1 
-+- c,‘=C,2 

c2 Cf 
, . . . . . . . . . . . . . . . . . . . (D-25) 

by equating the sum of the pressure drops across Dg and 
D,p (Fig. 2) to the total pressure drop for fluid loss. 

Leakoff velocities computed from our Eq. 20 are much 
different from those computed from either Eq. D-24 or 
D-25 in general. Eqs. D-24 and D-25 are derived by using 
Eqs. D-22 and D-23 to describe the viscous flow and com- 
pressibility mechanisms. This ignores the interdependence 
between the two phenomena that causes the boundary 
Difl(t) to move. The moving boundary makes the leakoff 
prbblem a nonlinear one. This nonlinearity is expressed 
in Eqs. D-14, D-15, and D-16 but not in Eq. D-24 or 
D-25. 

Next we consider the case of wall-building fluids with 
W> W,. Combining Eqs. 15, D-10, and D-18 with Eq. 
21 and letting 

PC--PI 
4=_...-- . . . . . . . . . . . . . . . . . . . . . . . . . . . . p, (D-18) ) . . . . . . . . . . . . . . . . . . . . (D-26) 
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we obtain From Eq. A-12, 

wo * 
P w + -y W 

ii 
PC = . . . . . . . . . . . . . . . . . . . . . . . (D-27) 

l+A 

Substituting this result in Eq. 20, we obtain 

A 
iy2,_-__--- 

Jp M’ + wo iy ) . . . . . . . . . . . . 
l+A 

2(t_t,) 1 (D-28) 

which gives finally Eq. 22. 

Appendix E 
We wish to derive Eq. 27 from Eq. 26. To begin, we note 
that the gradient ap/dx can be treated as a body force act- 
ing on the fluid in the fracture. Under this body force, 
the virtual work associated with a variation 6u of the x 
component of the fluid displacement is 

SY/,= sss -z&d”= 1 
b ap 

0 

- ZSI’cLx. . . . . . . . (E-l) 

The virtual displacement 6u must, of course, be com- 
patible with the constraints. The variation GVis given by 

6”= g6Lf+ Sbf. 
f Jbf 

Substituting Eq. E-2 into 

. . . . . . . . . . . . . . . . . . . (E-2) 

Eq. E-l gives 

SW/)= (s L, ap av 

0 
-j-p &Lf 

f > 

0 L,ap av - --dr 6bf. . . . . . . . . . . . . . . 
o ax abj > 

(E-3) 

Recognizing that fluid flow is the only source of dissi- 
pation, we have (from Eq. 23) 

AW,, =F,&+F26bf. . . . . . . . . . . . . . . . . . . . . (E-4) 

Comparing Eqs. E-4 and E-3, we derive 

s L, 
F,- 

0 
--dLD . . . (E-5) 

and 

4 
F2= --dLD. . . . .(E-6) 

0 

+2bfLDf(LD)dLf, . . . . .,. . . . . . . . . . : . . . . . (E-7) 

which gives 

; =2bf[F(LD)-LDf(LD),, . . . . . . . . . . . . . . (E-8) 
f 

av 

abf 
=2LfF(LD), . . . . . . . . . . . . . . . . . . . . . . . . (E-9) 

or 

av av 
bfah-Lfz=-2LfbfLDf(LD). . . . . . . . . (E-10) 

f f 

Combining Eq. E-10 with Eqs. E-5 and E-6, we derive 

F2b,f-F,Lf=2Lf2bf 
s 

1 ap 
-LDf(LD)dLD. . . . (E-11) 

0 ax 

Substituting Eq. E-11 into Eq. 26, 

bf2 
-LDf(LD)=2K~-----. . . . . , . . . 

Lf 

(E-12) 

From Eq. A-19 we can write bf in terms of the total 
crack volume VO. 

Vo 
bf=- 2pLf. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E-13) 

Substituting this result into Eq. E-12 gives Eq. 27. 

SI Metric Conversion Factors 
ft x 3.048* E-01 = m 

in. x 2.54* E+OO = cm 
psi x 6.894 757 E+OO = kPa 

+Conversion factor is exact. SPEPE 
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