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Summary. We present a thermal analysis of hydraulic fracturing based on variational methods. Our purpose is to provide a 
theoretical method for determining fracturing fluid temperature as a function of time and location during fracture growth. We first 
develop an expression of the variational principle for the general problem of convective heat transfer in a porous solid. Its 
accuracy is confirmed by comparisons with exact relations for specific cases. It is then used to develop a partial-differential 
equation for fluid temperature as a function of time and location. In this development, we treat fracture dimensions and leakoff 
distribution as known functions. The differential equation is solved by the method of characteristics. An alternative method of 
successive approximations is also presented. This solution can be combined iteratively with a fracture propagation analysis to find 
self-consistent results for fracture dimensions, leakoff, and temperature. We consider results obtained this way with those obtained 
with the two-dimensional (2D) Lagrangian analysis. Results are presented as profiles of temperature vs. dimensionless fracture 
length. When these profiles are normalized in terms of reservoir temperature and wellbore temperature, they change little with time 
of treatment, fracturing conditions, or reservoir properties. A simple profile with two straight-line segments is a good 
approximation for most fracturing treatments. This approximate profile is very useful for field operations. It provides a way to 
estimate fracturing temperatures rapidly during a treatment. 

Introduction 
Hydraulic fracturing technology includes an abundance of theoret- 
ical work on the problem of fracture propagation. Theories have 
evolved from the simplest 2D analyses to modern three-dimensional 
(3D) computer models. In this evolution, much attention has been 
given to the problems of fracture mechanics, rock deformation, fluid 
leakoff, proppant transport, and fluid rheology. The equally im- 
portant problem of fluid temperature distributions in the fracture 
has received little attention. 

Temperature considerations are especially important in modern 
fracturing operations where gelled fluids are used almost exclusive- 
ly. These non-Newtonian gels have viscosity and sand-carrying char- 
acteristics that are very temperature-sensitive. At critical 
temperatures, they begin to decompose and lose virtually all their 
sand-carrying capabilities. Extending these decomposition limits 
to higher temperatures has been an area of intensive research re- 
cently. Exploiting these efforts requires a confident knowledge of 
fluid temperatures in the fracture during the treatment. 

Thus, the problem of fracture temperature is a practically im- 
portant one. Nevertheless, theoretical contributions in this area have 
been few in number. Best known is the important paper of Whitsitt 
and Dysart, ’ who used energy- and mass-balance principles to de- 
rive a relationship for temperature in a propagating crack as a func- 
tion of location and time. Although this was a pioneering work, 
it has certain shortcomings. It relies on a complicated Laplace trans- 
form that is not strictly applicable. It overlooks some essential fea- 
tures of the problem, and its final result is not very adaptable to 
finding self-consistent values for crack dimensions and temperatures. 

Additional contributions have been made by Wheeler,2 by Sin- 
clair, 3 and by Poulsen and Lee.4 Wheeler considered the prob- 
lem of heat transfer by steam injected into an existing fracture. 
Because the fracture was treated as static, the results say little about 
temperature changes in a propagating fracture. Sinclair applied 
Wheeler’s results to a growing fracture but treated fracture propa- 
gation independently of heat transfer. Because the two are strong- 
ly coupled, this approach is not likely to produce realistic results. 
Poulsen and Lee suggested some modifications to Whitsitt and 
Dysart’s method. 

Variational methods provide a much more natural approach to 
the fracture temperature problem. Such methods have already been 
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developed for heat conduction and convection in mixed solid/fluid 
systems. 5 It remains only to extend these general methods to the 
problem of crack growth with leakoff. 

This is the approach we have used. Our purpose is to provide 
a detailed analysis of fluid temperature as a function of time and 
location during fracture growth with leakoff. As a starting point, 
we assume that the time history of crack growth has been deter- 
mined by a method that neglects temperature effects. Thus, crack 
dimensions and leakoff are treated as known functions in the ther- 
mal analysis. 

A second analysis of crack growth gives a better approximation 
by including temperature effects found from the thermal analysis. 
This process is repeated until convergence is obtained. The final 
results for crack dimensions and temperature distribution are thus 
self-consistent. 

The thermal analysis developed this way is general enough.to 
be used with almost any crack propagation theory. We include in 
this paper an example of its use with the 2D Lagrangian analysis. 
We assume that wellbore temperature at the fracture entrance is 
known from an independent analysis, such as that given by 
Ramey. 6 

We compare results obtained from our variational approach with 
exact solutions for specific cases to verify the general accuracy of 
the method. The accuracy has also been improved by appropriate 
adjustments of constants. 

The variational approach leads to a general partial-differential 
equation for temperature in the fracture as a function of time and 
position. We present two methods of solution: one based on suc- 
cessive approximations and the other on the method of character- 
istics. The latter is used in our examples on the basis of Lagrangian 
propagation analysis. 

Variational Principle 
General variational principles for a porous solid have already been 
developed. ’ We wish to apply these principles to the problem of 
deriving temperature distributions in a propagating fracture. 

We treat the problem of heat flow away from the fracture face 
by considering a porous half-space. We take the y axis normal to 
the plane boundary, y=O, as in Fig. 1. The positive direction is 
toward the porous medium. We assume that fluid leakoff can be 
represented by a uniform volumetric fluid velocity, v, parallel to 
the y axis. 
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Fig. l-Two-dimensional representation of heat flow with 
k&off. 

We consider Z?, the rate of heat flow per unit area of porous solid 
in the y direction. h includes heat flow by both conduction and 
convection. The area in this case i.ncludes both the solid matrix and 
the pores. The y component of H, as well as the temperature, 0, 
are assumed to be functions of y only. 

iVe can take H to be the sum of a convective and a conductive 
term. 

fi=J+vcfo. . . . . , . . . . . . . . . . . . . . , . . . . . . . . . . (1) 

The conductive term, J, can be expressed as 

J=-k,E, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...(i) 
dr 

where k, is the mixed thermal conductivity of the fluid-filled Substituting the relations bf Appendix B into Eq. 8 gives the fol- 
porous medium and can be expressed approximately as lowing expression of the variational principle: 

k,=+kf+(l-+)k,. . . . , , . i.. . . . , . . . . , , . . . . . . . . . . . . .(3) 

Conservation of energy requires that 

c,~=-~......................,............. . . (4) 
dy 

C, is the mixed heat capacity of the fluid-filled porous medium. 
We can write it approximately as 

cm =&zf+(l -+)C,. . . , . . . . . . . . . , , . . . . . . . . . . . * . . . . .(S) 

We integrate Eq. 4 with respect to time under the initial condi- 
tions O=H=O at t=O. This gives 

c,e=-f5 . . . . . . . . . ..*............*.......... . . (6) 
dy 

To derive the variational principle, we follow the procedure in 
Ref. 1. We multiply Eq. 2 by the variation 6H and integrate with 
respect to y: 

dy=Q. . . . . . . . . . . . . . . . e . . . . . . . (7) 

Appendix A shows how this result leads to the following expres- 
sion of the variational principle: 

1 

k,O 
s Edv+z =Q, . . . . . . . . . . . . . . (8) aD 

P 

with 

p,Bo~. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
P 

and 

cm 
I/=-- 

l 

DP 2 
tl dy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

20 

(9) 

. (10) 

Relationship Between Temperature 
and Heat Flow 
We use Eq. 8 to derive a relationship between temperature, 00, 
and the rate of heat flow, HO. 

We assume a linear distributibn of temperature, 0, between the 
surface y=O and the point y=Dp, where 0=0: 

e=eo ( > 1-y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (11) 

DP 

Within certain limits, the surface temperature, Bo, may be time- 
dependent. The penetration depth, Dp, is an unknown function of 
time to be determined. 

In Appendix B, we use Eq. 11 to derive expressions for each 
of the terms in Eq. 8. These include the important relation 

~o=l/‘zC,(~p~o+~Dpio). , . . . . . . . . . . . . . .:. . . . . .(12) 

2Dpbp - 
25vCfDp 98 oD; k, 

-t-=5- . . . . . . . . . . . . . . . (13) 
8% 800 Cm ’ 

In Appendix C, we evaluate the accuracy of these results by con- 
sidering some particular cases for which the correct results are 
known. This exercise leads to correction and simplification of Eqs. 
12 and 13. The final results are I 

2D,@, - - 4vcfDp =& .., . . . . . . . . . . . . . . . . . . <.* . . (14) 
Cnl C, 

and 
I 

Ijo=%CmbpOo+0.2736CmDp~o. . . , . . . . . . . . . . . . . . . .(15) 

Differential Equations for 
Temperature Distributions 
Eqs. 14 and 15 proyide a time-dependent relationship between the 
surface heat flow, Ho, and temperature, 00. We use this relation- 
ship to derive the differential equation for the temperature of the 
fluid, O,(x,t), at point x and time t. We take x to be the coordinate 
along the crack, as shown in Fig. 2. 

The width distribution of the crack is 

w=w(x,t). . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . .:. . (16) 
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We take v to be the volumetric velocity of fluid per unit area flow- 
ing because of leakoff at point x and time t: 

v=v(n,t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (17) 

The volumetric rate of flow in the crack across the width, w, at 
point x and time t is 

q=q(x,t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..(18) 

As the crack propagates, the quantities w,v, and q vary with x 
and t. We assume that this dependence has been evaluated in a 
preceding crack propagation analysis that neglects temperature ef- 
fects. By this analysis, we can determine the time, to, at which the 
crack tip reaches the point x. This time, of course, is a function of x: 

to=t&). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (19) 

We assume that the fluid is incompressible. We can write the 
following expression for the conservation of its mass: 

aw a4 
-+-+2v=o. .I.. . . . . . . . . . . . . . . . . . . . . . . . . .(20) 
at ax 

Also. we can write 

q=J 
L aw ( > -+2v dr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

X at 
(21) 

We neglect heat conduction in the x direction, in both the crack 
and the porous medium. Then the relationship between HO and 00 
in the crack is given by a one-dimensional analysis along y as de- 
rived in the preceding section. 

These assumptions lead to the following relationship for conser- 
vation of energy in the fluid within the crack: 

$(Boc’q)+2$+;(00c’w)=o. . . . . . . . . . . . . . . . . . .(22) 

We note that the heat capacity, C’ , of fluid in the crack can be differ- 
ent from that in, the porous medium. 

In Appendix D, we show how Eq. 22 leads to the result 

C’q~+(0.5472C,,,Dp+C’w);+2v(C’-Cf)-z=O. 

P 

. . . . . ..e........................... (23) 

This is the required differential equation in 00 expressed in terms 
of the new variable, 5; defined by Eq. D-5. When the heat capaci- 
ty of the fluid is the same in the crack and in the pores, it reduces to 

C’q~+(0.5472cmD*+C’w)~-5k”=0. . . . . . . . . . 
at 2Dp 

In this case, the effect of convection in the pores appears only 
through Dp. 

Methods of Solution 
We must solve Eqs. 14 and 23 for D,, and {. Because Eq. 14 does 
not contain {, it is easily solved for Dp , provided that the form of 
v is known. 

We can assume the approximate form of v to be’ 

v(x,t)= 
44 

Jo for t>to . . . . . . . . . . . . . . . . . .(25a) 

Fig. 2-Two-dimensional representation of the fracture. 

and 

v(x,t)=O for tcto. . . . . . . . . . . . . . . . . . . . . . . . . . . . .(25b) 

Taking the initial conditions, D,, =0 at t=to then gives a solution 
for Eq. 14 of the form 

Dp(x,t)=C,w. . . . . . . . . . . . . . . , . . . . . . . . . . . . . (26) 

Substitution of Eq. 26 into Eq. 14 gives a quadratic equation in 
Ct , which yields 

+SE. . . . . . . . . . . . . . . . . .(27) 

Substituting Eq. 26 into Eq. 23 gives an equation with only one 
unknown, {. 

Boundary conditions are determined as follows. If we assume 
that the fluid at the crack entrance is at constant temperature, we 
may write 

0,(O) = -(Q, _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (28) 

where 0f is the amount by which the formation temperature exceeds 
the fluid temperature at the crack entrance. If we choose the refer- 
ence temperature O,.=e,, we find 

3‘(x,t)=log -; ( > . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2% 

and 

{(O,t)=O. . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . .(29b) 

We consider two methods of solving Bq. 23. One is a method 
of successive approximations. We find an initial approximate so- 
lution by neglecting the term in f. In doing so, we make two ap- 
proximations. One is replacing the constant 0..2736 by zero, which 
is equivalent to neglecting the influence of 0 0 on Ho in Eq. 15. 
The other is neglecting the variation C’wf of heat content of fluid 
in the crack. With these approximations, Eq. 23 becomes 

Integration gives 
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ELLBORE TEMPERATURE 8~ 

so4 , 1 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

DIMENSIONLESS DISTANCE I 

Fig. 4--Temperature profiles given by data of Table 1. 

properties corresponding to this temperature. ’ These results are 
used with Eqs. 26 and 27 to obtain Dp(x,t). 

We next find {(x,t) by solving Eq. 23 by the method of charac- 
teristics. Eqs. 33 give P(x,t), r&t), and R(x,t). We use these re- 
sults to solve Eq. 34 and then Eq. 38 for each x and t. We then 
find {(x,t) from Eq. 40. 

From &cJ), we obtain the temperature distribution O&,t) from 
Eqs. 28 and 29. Using this temperature distribution, we repeat the 
Lagrangian analysis to obtain a new w(x,t), v(x,t), and q(x,t). In 

this second analysis, we account for the effects of temperature on 
fluid properties at each x and t. These effects are significant only 
for non-Newtonian gels where they are expressed through the 
power-law parameters n and K. This is most conveniently handled 
by means of a table of values of n and K vs. temperature. 

The new results for w(x,t), v(x,t), and q(x,t) are used as before 
to find a new temperature distribution &(x,t). This procedure is 
repeated until convergence is obtained in the results for w, v, q, 
D,, and 80. 

The final results provide a family of temperature profiles like 
those shown in Fig. 4. The profiles presented here were obtained 
with the values listed in Table 1 for the important fracturing pa- 
rameters. The heat capacity, C,, and thermal conductivity, k,, of 
the rock matrix are typical values for sandstones. C, varies little 
in different rock materials, * but k, can vary by more than a factor 
of 10 in typical varieties of reservoir rock.9 The mixed heat ca- 
pacity, C,, and thermal conductivity, k,, were determined from 
Eqs. 3 and 5. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 

P 

Fig. 5-Approximate profile used to represent the curve 

of Fig. 4. 
!S 
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TABLE l-PARAMETERS TO 
COMPUTE PROFILES OF FIG. 4 

Thermal Parameters 

C’, cal/(g-°C) 
C,, cal/(g-OC) 
C,, cal/(g-OC) 
k,, cal/(cm-PC) 
k,, cal/(cm-s-°C) 

Treatment Parameters 

1.0 
1.0 
55 

0.0015 
0.005 

0.15 
70 

210 

Injection rate, bbllmin-ft of gross fracture height 
Net/gross interval 
Formation permeability, md 
Far field effective stress, psi 
Fluid spurt loss 
Fluid wall-building loss, cm3/min” -cm2 
Reservoir fluid viscosity, cp 
Reservoir fluid compressibility, psi -’ 
Reservoir rock Young’s modulus, psi 
Reservoir rock surface tension, ergs/cm2 

Fluid Rheology 

(4) n (Ibf-se!“/ft2) -- 
70 0.410 0.525 
80 0.412 0.522 
90 0.417 0.515 

100 0.420 0.495 
110 0.429 0.470 
120 0.436 0.435 
130 0.446 0.400 
140 0.453 0.370 
150 0.460 0.370 
160 0.466 0.365 
170 0.470 0.355 
180 0.470 0.345 
190 0.470 0.335 
200 0.470 0.325 
210 0.470 0.315 

1 
0.3 

0.01 
2,000 

0 
0.2 

0.02 
5.0x10-4 

5x106 
105 

The profiles of Fig. 4 are presented as fluid temperature vs. 
dimensionless distance, f=x/L. Plotted in this way, the profiles 
change very little with time. As time passes, the leading edge of 
the profile moves very slowly toward smaller f. At a given P, the 
fracturing fluid is either at reservoir temperature or increasing slowly 
toward it in time. This is consistent with the mechanics of heat trans- 
fer in a growing fracture. Constant e corresponds to a point mov- 
ing away from the wellbore in time toward the region of reservoir 
temperature. 

(A) k, 8 .Ol CAL/CM-SEC-DES C 

(B) k, = .006 CAL/CM-SEC-CEO C 

(C) ks ’ .OOl CAL/CY_SBC4EQ C 

Ii.1 d.2 6.3 d.4 Ii.5 ti.6 6.7 0.0 6.9 

0 

Fig. 6-Approximate profiles representing a large variety of 
fracturing conditions. 
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As a practical approximation, the single profile of Fig. 5 can be 
used to represent all but the very early times in Fig. 4. This ap- 
proximate profile consists of two straight-line segments. One is 
drawn from wellbore temperature, B,,,, at P=O to reservoir temper- 
ature 0~ at P=O.47. The other is a line drawn along 0~ from 
P=O.47 to e= 1 .o. 

We find that the temperature profile of Fig. 5 is surprisingly 
general. As long as it is plotted in terms of Bw, OR, and t’, it seems 
to be relatively insensitive to all the parameters in Table 1 except 
k,, including n and K characteristics. We find roughly the same 
profile in going from the most viscous crosslinked gels to very thin 
ones. Similarly, there is little sensitivity to parameters that control 
leakoff. We find little difference between profiles for high- and for 
low-efficiency treatments. 

Variations in k, produce a shift in the value of f at which 0 
reaches OR. This is illustrated in the approximate profiles shown 
in Fi 

$ 
. 6 for a range of k, values typical of common reservoir 

rock. As a first approximation, all can be represented by the pro- 
file labeled B in this figure. 

For field applications, the B profile of Fig. 6 should be accurate 
enough to estimate fluid temperature in nearly all fracturing treat- 
ments. It predicts a very simple result. The fluid temperature in- 
creases linearly with P from wellbore temperature to reservoir 
temperature, reaching the latter about halfway out in the fracture. 
This condition prevails throughout the treatment except during very 
early times., 

These approximations apply only to reservoirs with average values 
of matrix conductivity, k, . This would include nearly all sandstone 
and limestone formations. They would not apply to formations with 
unusually low k,. One example is the diatomaceous earth forma- 
tion of southern California. Here, bulk thermal conductivities are 
on the order of 0.0001 Cal/cm-s-“C. Profiles for treatments in this 
formation reach OR at P values between 0.8 and 0.9. 

Conclusions 
Thermal analysis of hydraulic fracturing can be treated by the vari- 
ational formulation of convective heat transfer. Results already de- 
veloped for heat convection and conduction in mixed solid/fluid 
systems can be applied. 

The fracturing problem can be treated in a straightforward man- 
ner. First, a simple result can be derived to express the variational 
principle for heat transfer in a porous solid with fluid convection. 
This result can be used to develop a relationship between surface 
heat flow and temperature. These results lead to a differential equa- 
tion for temperature distribution in the fracture with fracture di- 
mensions and leakoff distribution treated as known functions. 
Fracture dimensions and leakoff can be determined initially by any 
2D analysis that ignores temperature effects. These results, used 
in the thermal analysis, provide an initial temperature distribution. 
This distribution can be used to account for fluid viscosity depend- 
ence on temperature. The resulting viscosity distribution can be used 
for a second evaluation of fracture dimensions and leakoff. This 
iterative procedure can be carried to convergence usually within 
three or four iterations. 

The thermal analysis of a fracture treatment can be considered 
in terms of a profile of fluid temperature, 0, vs. dimensionless frac- 
ture length, L These profiles can be normalized by relating them 
to wellbore temperature, 0,, and reservoir temperature, OR. Con- 
sidered in this way, the profile of a fracture treatment changes lit- 
tle with time over a variety of fracturing conditions and formation 
properties. In general, e rises almost linearly from Bw at P=O to 
OR at P= % and remains constant at 19~ to the crack tip e= 1. 

This practical approximation is very useful for field operations. 
It provides a rapid and fairly accurate means of estimating fracture 
temperatures during a treatment. 

Nomenclature 
b = numerical constant introduced in Eq. C-10 and 

evaluated in Eqs. C-15 and C-19 to have the 
average value 0.5472 

c = proportionality constant introduced in Eqs. C-l 1 and 
C-16 

c’ = volumetric heat capacity of fluid in the fracture 
Cf = heat capacity of pore-filling fluid 

C, = mixed volumetric heat capacity of fluid-filled rock 
material 

C, = volumetric heat capacity of solid rock matrix 
Cl = constant of integration.introduced in Eq. 26 

D = dissipation function introduced in Eq. A-7 by putting 
Eq. 8 in Lagrangian form 

Dp = penetration depth for heat flow 

Dp = derivative of Dp with respect to time or rate of 
change of penetration depth 

f = function introduced to express integral of Eq. 38 
F = function introduced to express integral of Eq. 36 
H = heat content per unit area of porous rock in x-z 

plane 
I? = rate of heat flow by convection and conduction per 

unit area of porous rock material in y direction 
yu = value of y at the surface y =0 
Ho = value of H at the surface y=O 

J = conductive part of Qh given by Eq. 2 
kf = thermal conductivity of the fracturing fluid 

k, = mixed thermal conductivity of fluid-tilled rock 
material 

k, = thermal conductivity of the solid rock matrix 
K = consistency index in power-law relation for non- 

Newtonian fluids 
f? = dimensionless distance along fracture, x/L 

L = fracture length from wellbore to tip 
n = flow-behavior index in power-law relation for non- 

Newtonian fluids 
P = function defined by Eq. 33 
q = volumetric fluid flow rate in the fracture 
Q = function defined by Eq. 9 
R = function defined by Eq. 33 
1 = time variable 

to + time at which fluid front has reached Location x in 
fracture 

tl = constant of integration introduced in Eq. 37 
T = function defined by Eq. 33 

v = volumetric velocity of fluid injected by leakoff into 
unit area of fracture face 

V = function defined by Eq. 10 
w = width distribution along fracture 

:,y,z = Cartesian coordinates oriented with x along direction 
of fracture propagation and y perpendicular to 
fracture face 

Q! = leakoff function defined by Eq. 25 
{ = variable defined by Eq. D-5 
f = time derivative of { 

{t = variable defined by Eq. 42 
0 = temperature of fracturing fluid 

i = time derivative of 0 

oil = arbitrarily chosen positive temperature 
0, = excess formation temperature above the fluid 

temperature at the fracture entrance 
or = arbitrarily chosen positive reference temperature 

introduced in Eq. D-5 
eR = reservoir temperature 
Bw = constant wellbore temperature 
00 = temperature of fracturing fluid at fracture face 

surface, y=O 
e’u = time derivative of 00 
et = variable difference between the formation 

temperature and the fluid temperature at the 
fracture entrance, x=0 

$I = porosity 
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Appendix A-Expression of Variational Principle 
We substitute the value of J from Eq. 1 into the first term of Eq. 
7 and integrate the second term by parts. Making use of Eq. 6, 
we obtain 

1 dy=OuSH,,. . . . . . . . . (A-l) 

We assume an approximate heat distribution 

H=H(y,DJ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (A-2) 

Treating Dp as an unknown function of time, we write 

6H=aH6Dn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(A-3a) 

1 aH 
e=---, . . . . . . . . . . . . . . . . . . . . . . . . . . . 

cm ql 

and 

60= %Dp. . . . . . . . . . . . . . . . . . . . . :. . . . . . . 
a% 

. . . (A-3b) 

. (A-3c) 

(A-3d) 

Substituting these equations into Eq. A-l gives Eq. 8. 
As a matter of interest, Eq. 8 can be put into a standard Lagran- 

gian form.5 Because 

f2bp, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
a% 

we can write 

. (A-4) 

aH aH 
-=- . . . . . . . . . . . . . . . . . . . . . . . . . . (A-S) aD, aD, . . . . . . . . , 

Substituting this result in Eq. 8 gives 

aD av 
a~+-=Q, . . . . . . . . . . . . . . . . ..r......... 

P 8% 

where D is the dissipation function, 

D=$ jDp(H-vC”S)2dy. . . . . . . , . . . . . . . . . 

m0 

. . . . (A-6) 

. (A-7) 

This formulation can be extended to any number, N, of general- 
ized coordinates by assuming H to be a function of all of them. 
This gives N equations of the form of Eq. A-6. 

Appendix B-Derivation of Terms in Eq. 8 
Substituting Eq. 11 into the conservation equation, Eq. 6, gives 

H= ~DpC,,,Sdy= ?K,,#,D, 

Y 

2 

. . . . . . . . . . . . . .(B-1) 

At y=O, 

Ho=%C,,,OoDp. . . . . . . . . . . . . . . . . . . . . . . . . . . .(B-2) 

The time derivative is 

At y=O, this reduces to Eq. 12. 
From Eq. B-l, we find 

aH 2 

-=*/zc,e, 
( > 

1-y . . . . . . . . . . . . . . . . . . . . . . . . . 
% ,op’ 

(B-4) 

We use these results to evaluate the integral term in Eq. 8: 

1 

s 

DP . aH ’ 2@,2 

ii0 

(H-t$0)-dy= 

a% 

-D,~, 
15k, 

5v C&f 2 ’ 3c; . 
--- 

24 k, 
go%+ 

4Ok, 
BOB oD;. . . . . . . . . . . . . . . (B-5) 

Substituting Eq. 11 into Eq. 10 and differentiating gives 

av 
- =r/sc,e,2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (B-4) 

a4 

Substituting Eq. B-2 into Eq. 9 gives the needed expression for Q: 

Q= %C,&Jo. . . . . . . . . . . . . . . . . . . . . .I.. . . . . . . . . . (B-7) 

We substitute Eqs. B-S through B-7 into Eq. 8 to get Eq. 13. 

Appendix C-Accuracy Evaluations 
We wish to evaluate the accuracy of Eq. 13 as an expression of 
the variational principle. We consider the case of a constant tem- 
perature, 80, applied suddenly at the surface y=O at time t=O. 
Thus 0 0 =O. We also assume there is no. convective heat flow, i.e., 
v=O. Eq. 13 then reduces to 

2Dpi$,=&. . . . . . . . . . . . . . . . . . . . . . . . . . 
G 

. . . (C-l) 
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Hence, Consider the case 

. . . . . . . . . . . . . . . . . . . . . . . . 
eu=cJ;, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..(C-11) 

(C-2) 
,with v=O. Eq. 14 gives 

Substituting Eq. C-2 into Eq. 12, we find the rate of heat flow into 
the solid at its surface to be 

I;r ze 0 21 
k”C”y0.55908 

4O t 
0 21 

k,C, 
. . . . . . . . . . 

t 
(C-3) And from Eq. C-10, we get 

The exact value for this case is given by Carslaw and Jaeger lo as 
JJ 

riro=-(l+b)cJkT,;C. . . . . . . . . . . . . . . .(C-13) 

4 ~o+00~~=o.564100~~. . . . . . . . ..(C-4) In this case, the exact value is known to belo 
7r 

The agreement in this case is within 1%. 
The next case of interest is Bn = constant and v # 0. In this case, 

. . . . . . . . . . . . . ..*........ . . . . . (C-14) 
2 

Eq. 13 gives 
Eqs. C-13 and C-14 are equivalent if 

25vCfDp 
2D$‘, - ~ =5&. . . . . . . . . . . . . . . (C-5) b=0.5852. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..(C-15) 

8G Cln 
We now consider the case 

For large t, we get large Dp, and the solution tends asymptotical- 
. ly to oo=ct, ‘v=O. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(C-16) 

25vCf 
2Dp=- 

For Dp, we again obtain Eq. C-12. Eq. C-10 gives 

sc, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (C-6) 
J5 

By integration, 

ri,=T(b+%)c~. . . . . . . . . . . . . . . . . . . . . .(C-17) 

25VCf t The exact result for this case is obtained from Eq. C-4 by use of 

Dp=- 16c, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (C-7) Duhamel’s integral. lo By this means, we obtain 

Using Eq. 12 again, we find the rate of heat flow to be tio=EJk,c,t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
&r 

. . (C-18) 

Ho =2S/3*vcpo. . . . . . . . . . . . . . . . . . . . . . . (C-8) 
Eqs. C-17 and C-18 are equivalent for 

Because heat Bow in this case is entirely convective, we know the 
exact result to be b=0.5092. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..(C-19) 

Ho=vcft’o. . . . . . . . . . . . . . . . . . . . . . . . . . . (C-9) 

Eq. C-8 would give the exact result if we replaced v by 32v/25. 
Making this change in Eq. C-5 gives the revised expression cited 
as Eq. 14. 

Eq. 14 is still a good approximation for the case where 0 is time- 
dependent. Adopting it for this case is equivalent to neglecting the 
term 90 oD~/Wo in Eq. 13. Dropping this term can be justified 
in several ways. First, we note that 0 e/80 is the logarithmic deriva- 
tive and hence tends to be small. Also, Eq. 13 was derived by a 
method valid essentially when the absolute magnitude of B. mono- 
tonically increases with time. Here we are interested in the oppo- 
site condition. Furthermore, Eq. 13 yields Dp, which is little 
dependent on the temperature variation, Bo, at the boundary. On 
the basis of these arguments, we adopt the simplified and correct- 
ed Eq. 14 as the basic one for Dp. 

We can use a similar procedure to improve Eq. 12. First, we 
rewrite this equation as 

As a practical approximation, we use the average of Eqs. C-15 and 
C-19 in Eq. C-10 to obtain Eq. 15. 

Appendix D-Conservation-of-Energy Equation 
Expansion of Eq. 22 gives 

C’y~+c~eo~+21jg+cw~+c~eo~~o. . . . (~-1) 

Substituting for awl& from Eq. 20 gives 

c~~~+21jo+c~w~-2vc’eo=o. . . . . . . . . . . . . . . (D-2) 

Substituting for & from Eq. 15, we get 

Eio=‘/K,,,&‘O+MbC,,,Dpio. . . . . . . . . . :. . . . . . .(C-10) 

Here! b is a numerical coefficient to be determined by best match- 
ing HO to exact values for cases where 00 is time-dependent and 
v=o. 

c’4~+c,eo~+(o.5472C~D~+C~n$$-2vc’Bo=o. 

\ 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (D-3) 
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This result can be simplified to 

+2vc’=O. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..(D-4) 

In practical cases, the fluid temperature is always less than the 
formation temperature. Because B. is the excess temperature above 
formation temperature, its values are negative, and we can write 

{(x,r)=log ) . . . . . . . . . . . . . . . . . . . . (D-5) 

where Bc, is an arbitrarily chosen positive temperature. In terms 
of the variable {, Eq. D-4 becomes 

c~q~+(o.5472c,D,+c’M;)~-c,~+2vc’=o. . . 
8X at at 

(D-6) 

Eq. D-6 is linear in {. We can find Dp by integrating Eq. 14 
with the initial condition D,, =0 at 1’10. By ehminating aD,lat be- 
tween Eqs. D-6 and 14, we obtain Eq. 23. 

SI Metric Conversion Factors 
cp x 1.0* E-03 = Pa*s 

erg/cm2 X l.O* E+OO = ml/m2 
ft2 x 9.290 304* E-02 = m2 
“F (=F-32)/1.8 = “C 

kcal/(kg-“C) x 4.184* E+OO = J/g*K 
Ibf x 4.448 222 E+OO = N 
psi X 6.894 757 E+OO = kPa 

psi-’ x 1.450 377 E-01 = kPa_’ 

‘Conversion factor is exact. JPT 
Original SPE manuscripl received for review Sept. 16. 1984. Paper accepted for pubtica- 
tion Feb. 27, 1987. Revised manuscript received Aug. 14. 1987. Paper (SPE 13229) first 
presented at the 1994 SPE Annual Technical Conference and ExhIbition held in Houston. 
Sept. 1994. 
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