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iBSTRACT 

We present a comprehensive theory of sand 
.ransport in thin fluid slot flow. Equations of 
lotion are developed for each of the transport mechan- 
sms observed in slot flow experiments: viscous drag, 
urbulence, and bed load transport. Viscous drag and 
.urbulence are treated together by deriving a differ- 
:ntial field equation for sand distribution in the 
#lot. The terminal fall velocity and a turbulent 
iffusion coefficient appear as parameters. The field 
equation is simplified by transformation to a system 
If curvilinear coordinates. The coordinate lines are 
,treamlines of sand particles in the absence of diffu- 
ion. Turbulent transport is accounted for by the 
liffusion of a square wave distribution at the slot 
entrance. The diffusion length associated with this 
lrocess is a measure of the concentration of sand 
transported by turbulence. We consider both natural 
turbulence and stimulated turbulence generated at the 
slot entrance. Our theoretical results show that 
iatural turbulence produces little sand transport. 
Stimulated turbulence is more important, but it dies 
)ut quickly with distance. Bed load transport is 
treated by using a principle of virtual dissipation. 
le consider two kinds of dissipation in the fluidized 
layer. One is associated with motion of sand parti- 
:les relative to the fluid. The other is due to an 
increase in viscosity with increasing sand concentra- 
tion. We derive equations of motion for sand parti- 
:les in the fluidized layer. An important result is 
that sand transport in the bed load does not scale up 
tiith fracture height as long as the flow velocity and 
the entrance concentration remain the same. This 
leads to the conclusion that bed load transport is a 
significant factor in laboratory-scale experiments, 
Jut not on a scale of field treatments. Therefore, 
If the three transport mechanisms observed in slot 
'low experiments, only viscous drag is important 
under hydraulic fracturing conditions. We discuss 

leferences and illustrations at end of paper. 

application of the complete theory to sand transport 
in fracturing treatments. 

INTRODUCTION 

Proppant transport is a critical part of hydrau- 
lic fracturing technology. There is a clear division 
between two classes of transport behavior: that of 
thin fluids and that of very thick, cross-linked gels. 
In this paper we consider only transport in thin 
fluids. We exclude all cross-linked gels. 

Thin fluids have been largely replaced by cross- 
linked gels as common fracturing fluids. Neverthe- 
less, thin fluids still have important applications in 
fracturing operations. Under various conditions they 
have significant advantages which, in recent times, 
seem to have been lost sight of. One of these is the 
formation of a settled bank which fills the width of 
the fracture from the entrance outward. This charac- 
teristic assures good communication with the wellbore 
and avoids the problem of proppant settling ahead of 
fracture closure. Thin fluids favor fracture length 
over width, as opposed to cross-linked gels where the 
reverse is true. This has economic benefits in mass- 
ive fracturing of tight formations where high fracture 
conductivity is not needed. 

The loss in popularity of thin fluids probably 
explains why more has not been done to develop a 
comprehensive theory of their transport mechanics. 
A considerable amount of experimental work has been 
done, not all of which has been published. Early work 
by Kern et a1.l and by Babcock et a1.2 introduced slot 
flow experiments in lucite models as the most practi- 
cal way to study sand transport mechanisms. Others3'4 
have used the same slot flow methods to make addi- 
tional contributions to the early experimental 
results. 

Numerical models have been developed on the 
basis of this experimental work.5'6 However, 
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these empirical models tend to be overly simplistic 
and go beyond what can be justified by the experi- 
nental results. For example, the concept of an equi- 
librium height cannot be extended from the laboratory- 
scale models to field-scale treatments. We will show 
qere that the mechanism which accounts for equilibrium 
in laboratory models cannot produce it in the scale of 
Field treatments. 

This paper undertakes to develop a comprehensive 
theory of sand transport in thin fluids. It takes 
account of the earlier experimental work, but it 
relies most heavily on more recent experimental 
*esults reported in an accompanying paper.7 These 
results, like the earlier work, were obtained for slot 
Flow between fixed parallel plates with no fluid loss 
through the walls, Strictly speaking, our theory is 
applicable only to this kind of slot flow. Caution 
nust be used in extending it to hydraulic fracturing 
:onditions with permeable fracture faces and an 
expanding crack width. 

We use the term sand transport throughout this 
oaper. However, it is to be understood that the 
theory developed here applies to any kind of proppant 
naterial. All that is required is that the particles 
)e of uniform density and approximately spherical. 

SAND TRANSPORT MECHANISMS 

Slot flow experiments identify three mechanisms 
For sand transport by thin fluid flow.1-7 These are 
turbulence, viscous drag, and bed load transport. 

Figure 1 shows a profile of sand concentration 
:(x,2) typical of those observed in slot flow experi- 
nents. Four regions can be defined. Region I is a 
settled bank in which the concentration is determined 
)y the packing characteristics of the sand. Region II 
is the bed load, a fluidized layer of sand with a 
thickness ranging up to 5 or 6 cm, Region III is the 
zone of viscous drag transport where the concentration 
is roughly constant. Region IV is the zone of turbu- 
lent transport through which the concentration 
jeclines to zero. 

We wish to develop a comprehensive theory which 
accounts for the dependence of concentration on x and 
! through all three of these transport mechanisms. We 
shall treat turbulence and viscous drag together. Bed 
load transport will be treated in a separate analysis 
)y the method of virtual dissipation. 

TERMINAL SETTLING VELOCITY 

A fundamental quantity in any analysis of sand 
:ransport is the terminal settling velocity vt. 
There is a large body of experimental data for 
sand grains in both Newtonian and non-Newtonian 

vt of 

liquids.a-1s 

The following basic relations are well known. A 
particle in a fluid at rest sinks with a terminal 
velocity vt according to the relation 

1 
m=-CApV* 2d t' 

where m is the weight of the particle less its buoy- 
ancy. A is its cross-sectional area, p the fluid 
density, and Cd the drag coefficient. 

For a spherical particle of diameter d 

m =:(p,- 
3 

P)gd 

A=;d* 

where p 
A 

is the particle density. From these 
relatio s 

Vt = 2/=-d. 
&cd 

The drag coefficient is a function of the particle 
Reynolds number Rep, 

Rep =vtd 
u 

where u is the fluid's kinematic viscosity. 

(2) 

THE SAND DIFFUSION EQUATION 

In turbulent slot flow the fluid will undergo 
fluctuations in velocity. At the point x,z we can 
take the average velocity fluctuation in the upward 
direction to be v and the average downward fluctuation 
to be -v. Stated in another way, half of the volume 
flow is upward with velocity v and half downward with 
velocity -v. We take R to be the vertical mean free 
path associated with these fluctuations. Thus, R is 
the average vertical distance traveled by the fluid in 
a particular fluctuation. 

We consider horizontal planes in the region of 
flow, as shown in Figure 2. We let c be the sand con- 
centration in the plane through z. Let plane 1 of 
ordinate z - a/2 have a sand concentration cl. 
be the concentration through plane 2 of ordinate 

Let 5 

z + a/2. 

The rate of sand volume transport from plane 1 to 
plane 2 is l/2 c,(v - vt). The rate from plane 2 to 
plane 1 is l/2 cz(v + vt). Across the plane through 
z, the total upward rate of sand transport is 

. 

‘IZ 
= l/2 c,(v - Vt) - l/2 c,(v + Vt). (5) 

We can also write 

Cl = -;(f) tc, 

c* = g (G) + c. 

Substituting (6) into (5) gives 

. ac 

llz = -D az - CVt 

(6) 

where 

D = l/2 RV . (81 

D is a turbulent diffusion constant. From dimensional 
considerations, we can see that 

D = BwU . (9) 
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J is the velocity of flow, a function of x, and B is a 
dimensionless function of the Reynold's number, 

Re=!!!. (10) 

In a more detailed analysis, additional functional 
dependence would have to be considered, e.g., the 
influence of concentration and closeness to the bottom 
af the flow region. 

Corresponding to the transport rate ;z across 
Jnit area is a volumetric transport rate, 

ii*=&,. (11) 

Jsing Equation (7), we find 

irl, = - DwaC - cwvt . (12) 
az 

Yz is the vertical component of the volumetric sand 
transport rate. The horizontal component, which is 
the transport rate across unit height, is given by 

ix = cwu = 4, . 

Conservation of sand volume requires 

(13) 

. . 

; (WC) = - !gL - ‘a$ . 

Substituting (12) and (13) into (14) gives 

(14) 

; (WC) = Dw $ + vtw ; - & (cwU) . (15) 

If we consider steady-state or quasi-steady-state 
conditions, the time derivative term in (15) drops 
out. The remaining common factor w can also be 
eliminated. Then, 

ac D$+ vt_= a (CU) . 
a2 ax 

(16) 

In terms of ;1 x, this gives 

D a2;, + vt at, _ a;l, 
-- ----. 
U az2 u az ax 

(17) 

Both D and U can be functions of x. 

We can simplify Equation (17) by transforming to 
curvilinear coordinates. We introduce 

c = z + z,(x) (18) 

and take 5 and x as the new independent variables. 
The function zl(x) is determined as follows. 

Using the new.variables, we can write 

I 

Also, since 

(Z), =2, 
we can write 

. . . 

($1, = ($lx (~1, + ($7, * 

We substitute (19) and (21) into (17) to get 

D a2;x + vt al, _ al, dz, 
. 

an, -- -- 
u ay2 

---+-. 
u a5 as dx ax 

We can choose z,(x) such that 

dz, _ vt 
Z--G-- 

or 
X 

z,(x) = J "t dx , 

OU 

(20) 

(21) 

(22 1 

(23) 

(24) 

Equation (22) is then reduced to 

D a2i x _a;, ----* 
U ac2 ax 

(25) 

Equation (25) is the sand diffusion equation for 
slot flow expressed in curvilinear coordinates. The 
coordinate system is illustrated in Figure 3. The 
coordinate lines are tangent to the velocity of compo- 
nents U and -vt. Thus, the coordinate lines are 
simply streamlines of the sand grains in the absence 
of diffusion. If U is independent of x, the coordi- 
nate lines are straight lines of slope -vt/U, as 
illustrated in Figure 4. 

For a better intuitive understanding of the sand 
diffusion equation, the following exercise is useful. 
We introduce an artificial time T defined by the 
equation 

dT=;. 

This reduces Equation (25) to 

a 2. TIC _ a;, 
D- 

ac2 -aT* 
(27) 

Equation (27) is the one-dimensional diffusion equa- 
tion, and T is the time required for a sand grain to 
travel horizontally from 0 to x. Physically, then, 
the diffusion of sand can be thought of as a one- 
dimensional diffusion along a vertical line. This 
line moves with a horizontal velocity U and falls 
vertically as if it were attached to the average 
motion of the sand grains. 

TRANSPORT BY NATURAL TURBULENCE 

In slot flow, we can take the transition from 
laminar to turbulent flow as falling in the Re range 

3300 < Re < 3600 . (28) 

Re for slot flow is defined by Equation (10). 



We show in Appendix A that, below the range (28), 
lhere the flow is purely laminar, B a 0. Above this 
*ange, where the flow is purely turbulent, B tends to 
;he value 2.1 x 10m3. This value of B can be used in 
lquation (9) to compute D for any U and w which 
)reduce turbulence. 

Substituting (9) into (27), taking U to be 
:onstant, and using (13) for G,, we find 

2 

Bw$=E. (29) 

rhis is the classical one-dimensional diffusion 
equation for which solutions are well known. 

Equation (29) expresses the diffusion of sand 
concentration along the line 5 as a function of x with 
time variable. The diffusivity is given by 8w. Since 
J is taken to be constant, the coordinate system is 
represented by oblique straight lines, as in Figure 4. 

In Figure 5, we plot the concentration c from 
(29) as a function of 5 at two values of x. At the 
slot entrance, x = 0, the concentration is a step 
function, as in Figure 5, where co is the input con- 
centration at the slot entrance. At a distance, 
x > 0, the step function has been smeared out, as 
shown in Figure 5. The smearing effect is felt to a 
distance q above and below the original step. 

The quantity q is a measure of the volume of sand 
transported by turbulence. It is clear in Figure 5 
that, for x > 0, the area under the c(r) curve above 
the line 5 = h represents the sand carried by natural 
turbulence. The size of this area is controlled by 
q. 

We can obtain a very good estimate of q at any x 
by relating the concentration diffusion in sand trans- 
port to thermal diffusion in heat flow. In thermal 
diffusion, q corresponds to a penetration depth.16 

Based on this analogy, we can use the result derived 
for thermal diffusion to write 

In regions where there is both natural and stimu- 
lated turbulence, the Diffusion Equation (25) becomes 

(34) 

q = 3.36 6 . (30) 

The c(s) curve is symmetric about the point 5 = h 
over an interval of 2q in r, as shown in Figure 5. 
The concentration between 5 = h and 5 = h + q is 
approximately given by the parabolic relation 

c-h2 
c = l/2 co (1 - - 

9 ) 
. 

. . 

a2nx _ u an, Dt(x) - - 
e2 ax’ 

If we again take U to be approximately constant and 
make use of Equation (13), we obtain 

ac 
Dt(x) $ = U ax . 

We can convert this to an equation with constant 
coefficients by the change of variable, 

(31) 

(35) 
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on U is the slope of the line 5 = h. We call this the 
neutral line. 

This analysis allows us to evaluate the impor- 
tance of natural turbulence as a transport mechanism 
under realistic fracturing conditions. For a rela- 
tively wide fracture, w = 1 cm, and a horizontal 
distance x = 1000 cm, we find from Equation (30) that 
q = 4.9 cm. Thus, over a distance of 10 meters, the 
effect of diffusion is felt only over a vertical 
distance of about 10 cm. The volume of sand transport 
associated with this small distance is almost negli- 
gible. From this analysis we can conclude that natu- 
ral turbulence is a relatively unimportant transport 
mechanism, even under the most favorable conditions. 
This conclusion is confirmed by the concentration 
profiles obtained in slot flow experiments.7 

STIMULATED ENTRANCE TURBULENCE 

In addition to natural turbulence, we must consi- 
der stimulated turbulence, which is introduced at the 
fracture entrance. In field treatments, where the 
fluid is pumped through perforated completions, most 
of the stimulated turbulence is induced at the per- 
forations. In laboratory slot flow experiments, it 
can be produced by pumping fluid through holes in a 
plate across the slot entrance. 

We can assume that the stimulated and natural 
turbulence are uncorrelated. Under these conditions, 
the combined turbulence has a coefficient given by the 
sum of the coefficients for each kind of turbulence, 

Dt=Ds+D. (33) 

When we transform these results back to the z - x 
plane, we find the result shown in Figure 6. In the 
z - x plane, the diffusion spreads to the vertical 
distance given by (30) on each side of the sloping 
line, given by 

The diffusion equation then becomes 

azc ac 
-=_. 
ac2 ac 

(37) 

z=h-(2)x. 

It is worth noting that the spreading due to 
diffusion does not depend on U. This is because the 
turbulent velocity fluctuations are proportional to U. 
But through Equation (9), they are also proportional 
to D. At the same time, the particle convection is 
also proportional to U. A quantity which does depend 

This result corresponds to the Diffusion 
Equation (29) for natural turbulence. We can follow 
the earlier analysis for natural turbulence to find a 
penetration depth for the combination of stimulated 
and natural turbulence, 

q = 3.36 /r. (38) 

This is the distance over which the effect of combine< 
turbulence is felt on both sides of a neutral line. 

L 
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Stimulated turbulence dies out away from the 
entrance due to the damping effect of the walls. This 
decay is related to a friction coefficient cf for the 
walls. 

We take u to be the fluctuating velocity associ- 
ated with stimulated turbulence, as illustrated in 
Figure 7. The dynamic equation of motion for the 
turbulent fluid is 

du dp I 
pwu -& = - w';i;; - qPCfU2 . 

In uniform flow, du/dx = 0 and 

dp 1 
wz= -4 

PCfU2 . 

Substituting this relation into (39) gives 

du ,I 

pwudx= -4 
PCf(U2 - U2) 

or 

(39) 

(4 

_ U2) = -$uz - U2) . 

Integrating (42) gives 

(42) 

(~2 _ ~2) = (u: - U2) exp (- Fl 9 (43) 

where u,, is the initial value of u at the crack 
entrance x = 0. 

Equation (43) can be rewritten as 

IJo + u 
u - u = (u. - U) - exp (- Z) . (44) 

u+u 

I For small velocity fluctuations, 

And if we let 

u'=u-u 

I 
uo = u. - u , 

Equation (45) is reduced to 

U’ = ui exp (- F) . 

(45) 

(46) 

(47) 

We let xd be the distance over which the initial VelO- 

city fluctuation is reduced tenfold, i.e. the value of 
x where u' = u,/lO. We find 

(48) 

We show in Appendix A that for slot flow condi- 
tions characteristic of hydraulic fracturing, 

Cf = .03 * (49) 

CJ. L. MEDLIN 

Using this value, we can evaluate the rate of decay o 
stimulated turbulence under the most extreme condi- 
tions. For a 1 cm fracture width and the cf cited 
above, Equation (48) gives x ~1 0.5 m. 

e 
Based on thes 

considerations, we conclude hat stimulated turbulent 
dies out very rapidly away from the slot entrance. 

From Equation (8), we can write for the stimu- 
lated turbulence diffusion coefficient, 

1 

DS = +I’ . 

Substituting (50) into (33) and making use of (47), w 
find the coefficient for combined turbulence to be 

Dt =!_ 
2 a& ew (- z) + Buw . (51) 

The variable 5 is given by 

5 = y [l - exp (- z)] + Bwx . 

Corresponding to the decay length xd, we find 

cd q ( 
0.9 9.& 

U 
+ 4.60 B) r . 

cf 
(53) 

The mixing length a is related to the pre- 
entrance geometry. In tge cases we are considering, 
it would be largest for flow through a perforation. 
Data for jet flow show that it is about equal to the 
jet diameter.17 Applying this rule to the perfora- 
tion, we find for the largest diameters commonly used 
that lls = 2 cm. 

Velocity fluctuations at the entrance can be 
expected to fall in the range'* 

0.1 u < u; < 0.2 u . (54) 

Taking w = 1 cm, using (49) for cf, and taking B = 
.DO2I as before, we find sd to be no larger than 
36 cm. From (38), we find the corresponding penetra- 
tion depth q to be no more than 20 cm. Hence, at the 
decay distance xd = 0.5 m, the effects of diffusion 
are felt over a vertical distance 2q = 40 cm. The 
effect of natural turbulence on this result can be 
neglected, since the second term of (53) is 
negligible. 

This example shows that stimulated turbulence 
provides significant sand transport near the fracture 
entrance. However, because the turbulence dies out s 
rapidly with horizontal distance, it is not an impor- 
tant factor in fractures of much length. 

TRANSPORT BY VISCOUS DRAG 

Sand transport by viscous drag is included in th 
foregoing analysis. The zone of viscous drag trans- 
port is controlled by the neutral line of Equation 
(32). The transport mechanics are illustrated in 
Figure 5 in terms of a square wave input concentratio 

co' In the absence of sand diffusion, the top of the 
square wave would move along the neutral line. The 
upper boundary of viscous drag transport is thus 
defined by the neutral line. In the presence of sand 
diffusion, the square wave is distorted, as shown in 
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Figure 5. However, the upper boundary of the viscous 
drag region still follows the neutral line as before. 

In all cases, the lower boundary of viscous drag 
transport is the top of the bed load. The concentra- 
tion of sand between the upper and lower boundaries is 
roughly constant at co. Thus, viscous drag transport 
is represented by a zone of concentration co extending 
from the top of the bed load to a height q-distant 
below the neutral line. 

The quantity of sand carried by viscous drag 
decreases as the neutral line descends and the settled 
bank rises. The settled bank height affects U in 
Equation (32) by defining the slot height open to 
flow. Thus, the rate of buildup of the settled bank 
controls the path of the neutral line. When the two 
boundaries meet, viscous drag transport ceases. 

BED LOAD TRANSPORT 

Bed load transport occurs through a fluidized 
layer of sand along the top of the settled bank. We 
wish to develop the dynamic equations of motion for 
this fluidized layer. We shall make use of recently 
developed methods based on a principle of virtual 
dissipation. To do this, we must evaluate two kinds 
of dissipation. One is due to motion of the solid 
particles relative to the fluid. The other is due to 
the increase of apparent fluid viscosity as the 
particle concentration increases. 

RELATIVE MOTION DISSIPATION 

We consider a system of spherical particles 
suspended in space with fluid flow through the system. 
We take up first the case of small particle concentra- 
tion. The drag force on each particle is 

. 
X=3rn d W, 

. 
where W is the fluid velocity and 11 its viscosity. 
For low Reynolds number, (55) expresses Stoke's Law. 

For n particles per unit volume, the pressure 
gradient along x, the direction of flow, is 

w 
-=nX. 
ax 

We find 

(57) 

This has the form of Darcy's Law, 

k ap i=_-, 
u ax 

with a permeability 

1 
k=-. 

3n n d 
(59) 

The particle concentration can be written as 

n II ds 
c=-. 

6 
(60) 

Eliminating n between (59) and (60) gives 

d* 
k=-. 

18 c 
(61) 

This result is only valid for low concentrations. 
For higher concentrations, we must account for the 
interactions between particles. This case has been 
treated by Brinkman1g'20, who obtained the 
permeability relation, 

For small c, (62) tends asymptotically to (61) 

Equation (62) can be written in the form, 

1 18 
-=- 
k & 

F(c) , 

where 

1 
F(c) = 

13 
tq(l- 

8-' 

c f- 
--3) 
C 

(62 

(63) 

(64) 

In Appendix 6, we derive the more accurate relation 
for F(c), 

F(c) = exp (c + 40 c3) - 1 . (65) 

For particles fixed in space, the rate of energy 
dissipation is 

R=iap= 18 

ax 
z u F(c) i2 , 

where we have made use of Equations (58) and (63). 
F(c) is given by Equation (65). 

VISCOSITY OF SAND-WATER MIXTURE 

To find the viscosity of the sand-water mixture, 
we again invoke the energy dissipation method. The 
rate of energy dissipation per unit volume of an 
incompressible Newtonian fluid can be written as 

R = 2~ ~ij ;tij . (67) 

The strain rate is given by 

. 1 av. 
eij =2 I---J ax 

j 
+$I f 

i 

where Vi is the velocity field. 

(68) 

When the principal directions of strain are alon! 
the axes x,y,z, we have 

R = 2~ (k,,' + Lyy2 + &*) . (69) 

We take z to be an axis of symmetry of the deforma- 
tion. Then the strain rates satisfy the condition 

. . 

exx = eyy . (70) 
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because of the fluid's incompressibility, The f(c) relation is only valid for large particle 
concentrations. For small concentrations, the . . . 

exx + eyy + ezz =o. (71) Einstein value, f(S) = 2.5 c, is appropriate. 

Je then find 

. 1. 
lxx = eyy = - -e,, . 

2 

It is convenient to express f(F;) in terms of the 
fractional saturation, 

(72) 6c 
s=-, 

n 
(79) 

Therefore, from (69), 

. ? 
R = 3~ eZZL . (73) 

rhis relation will allow us to find the viscosity IJ 
For a sand-water mixture if we know the rate of dissi- 
jation for a uniaxial principal strain rate along 2. 

We now consider the problem of the equivalent 
viscosity of a water-proppant mixture. EinsteiGl 
derived a relation for equivalent viscosity in a fluid 
zontaining small suspended spheres of uniform radius. 
Jsing the principle of energy dissipation, Einstein 
obtained, 

ue = u (I + 2.5 c) , (74) 

rhere u is the viscosity of the fluid alone and c is 
the concentration of suspended particles as used 
earlier. 

The Einstein relation is only valid for small c. 
To treat the problem of the fluidized layer, we must 
extend it to very large c. 

We assume spheres of diameter d distributed in 
the fluid with the cubic lattice symmetry shown in 
Figure 8. The dimension of the cubic unit cell is 
taken to be a. The sphere centers are located at the 
crack vertices. We take the spacing between spheres 
to be 

2h, = a - d . (75) 

The maximum particle concentration c = r/6 is reached 
whenh -0. 
quanti?y- 

For convenience, we introduce the 

2h, _ a - d 
5=7 --. 

d 
(76) 

To apply the energy dissipation method, we must 
evaluate the strain-induced power dissipation in the 
unit cube of Figure 8. To do this, we apply a virtual 
uniaxial strain in the z direction, producing a strain 
rate E 

EXX an t; 
z. This produces corresponding strain rates 

eyy in the other principal directions. 

The power dissipation associated with these 
virtual strain rates is evaluated in Appendix C. We 
show there that the total power dissipated in the unit 
cube of volume a3 is 

P = 3ua3'ezz2 [l + f(S)] , 

where 

(77) 

1+5 
f(S) = $ [(l + E)2 log - 

F 
1 

'sr 
- 2(1 f 5) + 41 * (78) 

where full saturation corresponds to c = n/6. We can 
then put 

f(S) = Q(C) 3 (80) 

where P is to be thought of as a function of particle 
concentration. Figure 9 is a plot of 0 vs. s in the 
range of validity of Equation (76): 

0.5 < s < 1 , (81) 

A convenient approximation for e(c) derived from 
Figure 9 is 

o(c) = 2.5 c + 
1.607 5 - 1.325 s2 

1 _ 51’3 * 
(82) 

This approximation agrees with the Einstein result 
small c and agrees with (78) to good approximation 
the range 0.5 < 5 < 1. 

The power dissipated per unit volume in the 
fluidized' sand layer' is, from (77), 

P = sLzz2 [l + @(C 1 

or 

P = 3~e'e,,2 , 

where 

ue = l-@(c), 

$(C) = 1 + e(c). 

for 
in 

13 (83) 

(84) 

(85) 

Thus, the fluid behaves as a homo eneous medium of 
equivalent viscosity ue given by 9 85). 

In this derivation, we have considered an axial 
principal strain rate along z. We can extend this to 
the case of completely general strain by means of 
Equation (67) if we simply replace u by ue = u+(c). 
Thus, 

R = 2~ o(C) ~ij 'ij . (86) 

This relation assumes incompressibility of the fluid 
through Equation (71). This assumption is likely to 
be invalid in sand-laden fluid. If the sand con- 
centration changes due to relative motion between 
the fluid and sand, the fluid behaves more like a 
compressible gas. The additional dissipation due to 
this motion is given by Equation (66) rather than 
Equation (86). This means that, when there are no 
distortion or squeezing effects, Equation (86) should 
vanish. Therefore, the rate of dissipation in sand- 
laden fluid should be expressed as 

R = 2~ g(C) (Lij Lij - i L) (87) 
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Yhere 

. 
l = 6ij eij a (88) 

ly means of Equation (87), we can separate relative 
lotion effects, expressed by the first term, from 
;queezing effects, expressed by the second term. 

IYNAMIC EQUATIONS OF MOTION 

To derive the dynamic equations of motion for the 
'luidized sand layer, we invoke a recently developed 
jrinciple of virtual dissipation.**-*'+ This approach 
offers a powerful method of analysis for dissipative 
;ystems. It is particularly appropriate to the fluid- 
ized sand problem. 

We first consider the potential energy of the 
'luidized sand system in a gravity field potential r. 
The potential energy is 

G = I [p(l - c) + psc] i-da . 
s-a 

(89) 

rhis is a volume integral extended over the domain n. 
The potential r is given by 

r =gz, (90) 

there g is the acceleration due to gravity. 

We can express the 
lence of the volumetric 

an i 
C-e-, 

aXj 

vhere 

le further define fluid displacement as 

t. 
W-l Wdt 

0 

t. 

concentration c as the diver- 
displacement field ni, 

(91) 

(92) 

(93) 

Ui = I Uidt 

0 

where ;. is the velocity field of the fluid. 
also write 

We can 

. 
ni ’ -= iri 
C 

Ui --* 
1 -c 

(94) 

Here, ;i/C is the velocity of the particles and 

- i.l(l-c) is the particle velocity relative to the 
flu:d. We consider n. and u. to be the unknown field 
variables. Equation 794) leids to the following 
variational relation 

6Ui 6Wi 
-= 6ui --, 

C l-c 
(95) 

which gives 

1 
6Wi = (1 - C)6Ui - -c 6Ui * 

C 
(96 1 

The strain rate is now given by 

The corresponding variation is 

1 a 
Geij = 2 (- a SUj) e ax 

j 

6Ui + ax 

i 

The incompressibility condition for the fluidized 
layer is 

&- [(l - C);i + ;li] = 0 . 
i 

(98) 

This 

must 
this 

is expressed in variational terms as 

& [(l - C)&Ui + 6Ui] = 0 * (100) 

To apply the principle of virtual dissipation, we 
use the dissipation function per unit volume. In 
case, it is given by 

1 
x=$L (101) 

where x is the sum of Equations (66) and (87). That 
is, 

9 
x =- d 2 ~F(c)L’* + U4(c)(Lijiij -i ;*I (102) 

P 

where 

~ = iri’wi . (103) 

We can now write the principle of virtual dissi- 
pation as 

6G+j [2 6Wi + 
ax 

7 6ei j + “iPsSP. 1 

0 aWi aeij 

+ yip(l - C)6Ui] dQ = 0 . (104) 

In the integrand, ai is the acceleration of the parti- 
cles and yi the acceleration of the fluid. In terms 
of the variables, I;i and ; i, their values are 

. . 
au. 

=.2t; 
yi at 

aUi 

jaxj 

and 

. . . 

(105) 

ai =!-(~)+.L(~) . 

j 
(106) 

The term aips6Ui in (104) is just the virtual work of 
the inertial forces c*inC on the displacement 6n i/C. 
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integrand, w'! obtain the two equati&, ’ 

C(!+-P) z- 
aXi 

- (1-C) $ + CtiCPS + C $ = 0 
aWi i 

(l-c) ax - 
ap 

(I 
acrijt p(l-C)yi + (1-C) K = 0 . 

IO) 

aWi aXj i 

This pair of equations together with the incompressi- 
bility relation (99) serve as the dynamic equations of 
motion for the fluidized layer. They govern the time 
evolution of the two unknown velocity fields ii and 
'u.. In (llO), we have replaced A by -p, since it 
plays the role of a pressure. In these equations, 
the concentration c is related to ni through 
Equation (91). 

The variations to be considered in Equation (104) 
are those of n. and Ui. Their variations are not 
independent. Shey must satisfy the incompressibility 
constraint (100). The usual procedure in dealing with 
such a variational constraint is to introduce a 
Lagrangian multiplier A. The variational principle 
(104) is then replaced by 

6G + J {SGWi + 
ax 

Q airi 

- Geij 
. 

aeij 

+ UiPs&Ui + vip(l-C)6Ui 

+-II- ,", [(lmc)dui + SUi]} dQ = 0 . (107) 
i 

The variations 6Ui and 6~i are independent and arbi- 
trary. The first term 6G is expressed as 

6G = I (p, - p)rscdn , (108) 
s2 

where we have, according to Equation (91), 

a&i 
&C=--. 

aXi 
(109) 

We now express 6Wi, Geij, and 6~ in Equation 
(107) in terms of 6n. and 6u.. 
and cancelina the co;fficien i 

Integrating by parts 
s of 6n.: and 6~: in the 

We define the quantity 

ax 
'ij =: - 

aeij 

(111) 

By adding the two Equations (llO), we obtain 

ar au.. 
c(Ps-P) ax - 2 + Pscai 

i j 

+ P(l-C)yi + $ = 0 * (112) 
i 

This is the dynamic equilibrium equation for the 
fluidized layer. From it we see that p is the excess 
pressure over the static hydrostatic equilibrium 
pressure ps. This can be shown by adding to (112) the 
static equilibrium equation, 

ar ap, 
p-t- =o. 

aXi aXi 
(113) 
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If we eliminate ap/axi between Equations (lI.O), 
we obtain 

ar 1 ax 
(Ps-P)----_ 

+,I aaij 

aXi ’ aWi l-' aXj 

+ UiPS - ViP = 0 . (114) 

Substituting for x from Equations (101) and (66) 
gives 

ar 
(P, - P) ax - 

18 uF(c) ; + 1 aaij 

i dp2c i l-c aXj 

+ QiPs -Yip = O 9 (115) 

where iri is found from (96) to be 

ir, = (l-c) ii - A21i . 
C 

(116) 

Equation (115) may be put into more useful form 
by considering the particle fall rate vf. When the 
particles are falling at a uniform velocity in the 
vertical direction, we can write 

. 

vf=_3. (117) 

With the fluid at rest, we also have 

;i = Uij = ai = yi =0 

ar -=g 
az 

Therefore, 

. 
i pz_ z 

Vf = - c I_c 

Using these relations in (115 

I-c)F(c 

1, we obtain 

(Ps - P)9 = 
18 u( ) 

d2c Vf - 

(118) 

(119) 

(120) 

This provides a relation between particle fall rate 
and concentration. For vanishing concentration, it 
reduces to 

(P, - P)9 = 
18 

Since 

i+9” Vt , 

Equation 121) is just Stokes Law as given in 
Equation 55). Substituting (121) into (115) gives 

(121) 

(122) 

F(C)bi + 1 aaij 
(P.j - P)9lli - (Ps - P)9 - 

CV f l-c aXj 

+ QiPs -YIP = O 3 (123) 

where ni is the unit vertical vector. In this equa- 
tion the fall velocity vf replaces particle size d as 
a characteristic parameter. Thus, the motion can be 
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expressed in terms of a quantit 
under experimental conditions c l 

which can be measured 
aracteristic of slot 0.9 + > 0.1 Bed Load transport. 

flow experiments. 

The fall velocity expressed in (119) assumes 
that the vertical fluid velocity is zero. This is 

$< 0.1 Suspension transport. 

not an experimentally realistic condition. It is 
more realistic to consider the settling experiment of These relations have been confirmed in general by 
Figure 10. In this case, the sum of the sand and sand transport experiments. 
water volumes is constant below a given level. 
Therefore, 

PRACTICAL APPLICATIONS 
. . 

(1-c)u, + nz = 0 . (124) We have derived equations of motion for the three 

Equation (94) becomes observable mechanisms which control sand transport in 
slot flow. Equations (22) and (25) account for 

. 

‘Iz _* irZ 
viscous drag transport through the system of curvi- 

--u --* 
Z l-c 

(125) 
linear coordinates illustrated in Figures 3 and 4. 

C Equations (30) and (38) account for turbulent trans- 

Eliminating iz between (124) and (125) gives 

port through the diffusion height q. Equations (99) 
and (110) are the dynamic equations of motion for the 
fluidized layer which transports sand in the bed load. 

ir,=_!!& (126) 
C In applying these equations to sand transport in 

In accordance with (118), Equation (123) is reduced 
a propagating fracture, we must observe some important 
precautions. All of these equations have been derived 

to for the case of simple slot flow. We have not consid- 

F(c) i 
ered a slot width or height which changes with time or 

vt=, Z' (127) with distance along the fracture. We have also 
neglected fluid loss through the walls. Assumptions 

Using (126), we then find 

. 

‘Iz_ c 
vs=-c -qEp * 

in the theory are strongly influenced by observations 
made in the accompanying experimental paper. Here, 
sand-laden fluid was flowed through a slot of uniform 
height and width with no loss of fluid through the 

(128) walls. 

Equation (128) expresses the sinking velocity as a With these precautions in mind, our theoretical 
function of concentration for the conditions of relations can be applied to sand transport in hydrau- 
Figure 10. Realistically, c may not be uniform lic fracturing. They can be used to develop numerical 
because of unstable clustering. F(c), which refers to methods which give sand density profiles along the 
the corrected Brinkman theory, can be obtained from fracture at each step in time. The end result would 
measurements of settling rates in clustered sand. then be a final profile of the settled sand bank at 

the end of the treatment. This profile must, of 
course, be scaled to fracture dimensions. Therefore, 

VELOCITY RANGES the sand transport equations must be coupled to equa- 
tions which predict fracture dimensions during growth. 

The mechanics of sand transport are controlled Almost any of the various fracture propagation the- 
more by the horizontal fluid velocity U than by any ories found in the literature is suitable for this 
other factor. The relative magnitude of U serves to purpose. 
define characteristic types of particle transport. 
At very low velocities, the particles move only by In developing any such numerical methods, a 
sliding or rolling. The upper limit of this range is greatly simplifying assumption can be made. Both 
determined by a critical particle pick-up velocity. turbulent and bed load transport can be neglected. In 
At intermediate velocities, a fluidized layer is all but very special cases, only viscous drag trans- 
formed to provide bed load transport. At high velo- port need be included. Thus, Equations (22) and (25), 
cities particles are transported by suspension. together with the correspondi,ng curvilinear coordinate 

system, are all that is needed to model sand transport 
The velocity ranges for these characteristic in flow through slots of field dimensions. 

transport mechanisms can be defined in terms of the 
ratio vt/U. This has been established by theoretical This simplifying assumption is justified by the 
and experimental work in sediment transport in rivers. numerical examples presented here and by experimental 
In Appendix 0, we show how these ranges can be defined results presented in the accompanying paper. We have 
by applying river transport results to sand transport shown by numerical examples that turbulence cannot 
in slot flow. Based on these applications, the corre- produce significant transport in slot flow character- 
spondence between vt/U and the transport character- istic of hydraulic fracturing treatments. Experi- 
istics is as follows: mental density profiles have confirmed this. Bed load 

Vt 
transport can only be important when the height of the 

is- 
> 0.9 Transport by rolling or sliding. fluidized layer is more than a negligible fraction of 

the total slot height. Experimental data show that 
the fluidized layer is l-2 inches in vertical thick- 
ness in a slot of 12-inch height. Under these condi- 
tions, it has a significant effect on sand transport 

“t, 09 
u * 

Critical condition of pick-up. 
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and can lead to establishment of an equilibrium bank 
height. Equations (99) and (110) show that the height 
of the fluidized layer does not increase with increas- 
ing slot height. Therefore, in a slot of 20-50 ft 
height, its contribution would be insignificant. 

CONCLUSIONS 

Equations of motion have been derived for the 
three observable mechanisms of sand transport in slot 
flow. These are viscous drag, turbulent transport, 
and bed load transport. Our results show that, under 
field conditions, viscous drag is the only important 
transport mechanism. 

Viscous drag and turbulence have been described 
by a differential field equation in c, the sand dis- 
tribution in the slot. This field equation has been 
simplified by transformation to a system of curvi- 
linear coordinates. Transport by viscous drag has 
been accounted for by recognizing that the coordinate 
lines are streamlines of the sand particles in the 
absence of diffusion. Under conditions of uniform 
fluid velocity, U, the coordinate lines are straight 
lines. 

Turbulent transport has been accounted for by a 
diffusion equation which describes the smearing of a 
square wave distribution of sand as it moves away from 
the slot entrance. The concentration of sand trans- 
ported by turbulence has been related to a diffusion 
length q, which is the half-distance over which the 
effects of diffusion are felt. Both natural and 
stimulated turbulence must be considered. 

Our results show that natural turbulence cannot 
transport a significant concentration of sand under 
normal fracturing conditions. Stimulated turbulence 
is more important, but it dies out quickly with 
distance. Therefore, both natural and stimulated 
turbulence can be ignored as transport mechanisms. 

Bed load transport has been treated by a virtual 
dissipation principle. There are two kinds of dissi- 
pation in the fluidized layer. One is associated with 
the relative motion between sand grains and fluid. 
The other is due to an increase in viscosity with 
increasing sand concentration. From the virtual dis- 
sipation principle, we have obtained equations of 
motion for sand particles in the fluidized layer which 
provides bed load transport. These equations show 
that the bed load does not .scale up with slot height. 
Its vertical thickness is independent of slot height. 
In laboratory slot flow experiments, the bed load has 
a vertical thickness of l-2 inches. Under these con- 
ditions, it is an important transport mechanism. 
However, on the scale of field treatments, a bed load 
of this vertical thickness makes negligible contribu- 
tion to sand transport. Our conclusion is that the 
bed load can be important on a laboratory scale, but 
is almost never important on a field scale. 

Considering these results, we conclude that, of 
the three mechanisms, viscous drag, turbulence, and 
bed load, nearly all of the sand transport in a field 
treatment is provided by viscous drag. 

NOMENCLATURE 

a = 

B = 

b = 

Cd = 

c = 

c' = 

co = 

cl' cz = 

Cf = 

D = 

D, = 

Dt = 

d = 

dp = 

; = 

. 

eij = 

F(c) = 

f(S) = 

G = 

H = 

g = 

h = 

ho = 

K = 

k = 

a = 

Edge dimension of unit cell in fluidized 
layer as shown in Figure 8. 

Dimensionless function defined by 
Equation (9). 

Measured quantity introduced in 
Equation (A-4). 

Drag coefficient for proppant particle. 

Proppant concentration in fluid. 

Fluctuation in concentration c due to 
turbulence. 

Sand concentration introduced in a step 
function profile at the slot entrance, as 
illustrated in Figure 5. 

Proppant concentrations in planes 1 and 2 of 
Figure 2. 

Friction coefficient of slot walls associ- 
ated with fluid flow. 

Turbulent diffusion coefficient. 

Diffusion coefficient for stimulated 
turbulence. 

Diffusion coefficient for combined turbu- 
lence given by Equation (33). 

Diameter of proppant particle. 

Pipe diameter. 

Strain rate defined by Equation (88). 

Strain rate component defined by 
Equation (68). 

Concentration function defined by 
Equation (65). 

Function defined by Equation (78). 

Potential energy due to the gravity field in 
the fluidized layer. 

Height ab 0’ 

transport 

Accelerat ii 

Height of 
bution at 

ve river bottom in sediment 

on due to gravity. 

step function proppant distri- 
slot entrance. 

Spacing between spheres representing prop- 
pant in fluidized layer as illustrated in 
Figure 8. 

von Karman constant introduced in 
Equation (A-22). 

Darcy permeability. 

Vertical mean free path or mixing length 
under conditions of natural turbulence in 
slot flow. A = Cross-sectional area of a proppant particle. 



i&, i, = 

m = 

n = 

ni = 

P = 

P, = 

P, = 

P = 

Ps = 

Q(r) = 

q = 

R = 

Re = 

Rep = 

Re* = 

r = 

s = 

T = 

t = 

u = 

Uf = 

u* = 

u = 

Vertical mean free path or mixing length in 
turbulent river flow. 

Rate of proppant transport through unit 
volume in x and z directions as defined by 
Equations (11) and (13). 

Weight of proppant particle less its 
buoyancy. 

Number of proppant particles per unit 
volume. 

Unit vertical vector in the fluidized 
layer. 

Power dissipated per unit volume in the 
fluidized layer. 

Power dissipated in 
in fluidited layer. 

Power dissipated in 
in fluidized layer. 

volume V, of unit cell 

volume V, of unit cell 

Dynamic fluid pressure in slot. 

Static hydrostatic equilibrium pressure in 
the fluidized layer. 

Parameter introduced in Equation (C-7) and 
expressed by Equation (C-9). 

Vertical half-distance or diffusion length 
over which the effects of diffusion are felt 
in turbulent transport. 

Rate of energy dissipation in fluidized 
layer. 

Reynolds number associated with fluid flow 
in slot as defined by Equation (10). 

Reynolds number associated with proppant 
particle as defined by Equation (4). 

Boundary Reynolds number defined by 
Equation (D-2). 

Radial polar coordinate. 

Fractional saturation defined by 
Equation (79). 

Artificial time variable defined by 
Equation (26). 

Time variable. 

Average velocity of fluid flow along x in 
slot. 

Friction,velocity expressed by (A-23). 

Shear velocity at channel bottom in river 
flow. 

Velocity fluctuation along x associated with 
stimulated turbulence in slot as illustrated 
in Figure 7. 
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u. = Initial value of u at slot entrance. 

Ui, U’ = 
J Displacement field of fluid in fluidized 

layer. 

. . 

‘iy ‘j = Velocity field of fluid in fluidized layer. 

u’ = Velocity fluctuation expressed by 
Equation (46). 

I 

u. = Velocity fluctuation at slot entrance 
expressed by Equation (46). 

v, = Partial volume of unit cell in fluidized 
layer illustrated in Figure 14 and expressec 
by Equation (C-3). 

v, = Partial volume of unit cell in fluidized 
layer expressed by Equation (C-24). 

v = Velocity fluctuation along z associated with 
natural turbulence in slot flow. 

v’ = Velocity fluctuation along z associated with 
turbulence in river flow. 

Vf = Fall rate of proppant particles in fluidizec 
layer. 

Vi, V* = 
J 

Velocity field associated with strain rate 
of incompressible fluid in fluidized layer. 

vr = Radial velocity component arising from 
virtual strain rate along 2. 

vs = Sinking velocity or fall rate of particles 
under the conditions illustrated in 
Figure 10. 

Vt = Terminal settling velocity of an isolated 
proppant particle. 

w = Fluid displacement. 

Rate of fluid displacement equivalent to the 
quantity measured in a Darcy flow 
experiment. 

'wi = Component of fluid displacement rate. 

w = Width of slot. 

x = Drag force on a spherical particle due to 
fluid flow through the space in which it is 
suspended. 

Xd = Decay length or distance over which a ten- 
fold reduction occurs in the initial velo- 
city fluctuation uo. 

X,Y,Z = 

Ya = 

z1 = 

Space coordinates with z oriented vertically 
and x directed along the slot. 

Length parameter in von Karman distribution 
of Equation (A-4). 

Independent variable defined by 
Equation (18). 

Acceleration of solid particles in the 
fluidized layer. 
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8 = Empirical parameter expressed in 
Equation (A-20). 

61 = Correlation coefficient defined by 
Equation (A-12). 

6.2 = Correlation coefficient defined by 
Equation (A-19). 

r = Gravity field potential defined by 
Equation (90). 

6ij = Kronecker Delta. 

Yi = Fluid acceleration in the fluidized layer. 

EXX' Eyyv EZZ = Virtual strain rates along principal 
stress directions in fluidized 

‘ij = 
‘10 = 

TC = 

TX = 

e(c) = 

layer. 

Shear component of strain rate expressed by 
Equation (C-10). 

Independent variable defined by 
Equation (18). 

Volumetric displacement field of sand-laden 
fluid in slot flow. 

Component of volumetric sand transport rate 
across unit area in slot flow. 

Angular polar coordinate. 

Non-dimensional empirical constant intro- 
duced in Equation (A-3). 

Lagrangian multiplier introduced in 
Equation (107). 

Mixing length associated with stimulated 
turbulence at the slot entrance. 

Fluid viscosity. 

Equivalent fluid viscosity of water-proppant 
mixture. 

Kinematic fluid viscosity. 

Variable defined by Equation (36). 

Decay length associated with the variable 
5. 

Fluid density. 

Proppant particle density. 

Quantity defined by Equation (111). 

Friction stress at river bottom. 

Critical shear stress for sediment transport 
in river flow. 

Shields parameter defined by Equation (D-l). 

Function equivalent to f(S) but expressed ir 
terms of concentration c. 

$(C) = 

x = 

Y = 

y’ = 

cl = 

Function related to f(E) through Equations 
(80) and (85). 

Dissipation function per unit volume. 

Diffusion coefficient for river flow definec 
by Equation (A-15). 

Kinematic eddy viscosity for river flow 
defined by Equation (A-19). 

Domain of volume integral in Equation (89). 
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APPENDIX A 

We consider the velocity fluctuations u' along x 
associated with turbulent slot flow. Measurement of 
u' in water have been reported by Waltendorf and 
reviewed by von Karman.25 These measurements give a 
root mean square value of the velocity fluctuation to 
be 

/- ;1* -= .05 . 
IJ max 

(A-1) 

The average U of the velocity distribution is close tc 
U max. Therefore, we can write approximately 

u' = .05 u . (A-2) 

von Karman's similarity law for the mean free 
path is25 

(A-3) 

where K = 0.4 is a non-dimensional empirical constant. 
In the fully turbulent region, the velocit distribu- 
tion derived by von Karman is of the form, .!s 

u =- uf (log; + b) (A-4) 
K 
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where 

UfC ‘0 J P 
(A-5) 

is the friction velocity. '1,, is the shear stress at 
the wall of the slot, b is a measured quantity, and y. 
is a length which varies with the Reynold's number and 
wall roughness. 

Substituting (A-4) into (A-3) gives 

R =cy. (A-6) 

Equations (A-4) and (A-6) are valid from y = 0 to 
y = w/2. As illustrated in Figure 11, there is a 
symmetric relation from y = w/2 to y = w. Thus, the 
average value of R across the width w is 

(A-7) 

If we take (A-2) to be the average vertical velocity 
fluctuation v, we have 

v = .05 u . (A-8) 

We substitute (A-8) and (A-7) into Equation (8) 
to obtain 

D = .0025 WU . (A-9) 

From Equation (9) the coefficient B is then 

B=2.5~10-~ . (A-10) 

An independent evaluation of B can be obtained by 
borrowing from the theory of sediment transport in 
rivers. The physics of sediment transport has been 
discussed extensively by Vanoni and others.26-30 The 
useful results for our application to slot flow can be 
summarized as follows. 

The upward sediment transport rate is given by 

r = x = v'(c + c') = 'v , (A-11) 

where v' is the vertical velocity fluctuation in river 
flow and c' is the concentration fluctuation. The 
bars indicate mean values. We can define a correla- 
tion coefficient 

c’v’ 
61 = , , (A-12) 

J- (cq2 (;l)2 
and we can assume that 

The quantity 21 is a m 
(A-12), and (A-13), we 

xing length. Combining (A-11), 
obtain 

- ,- 
r = v’c’ = _ 

._ 
18, I &I,’ 111 ; - 

(A-13) 

(A-14) 

We define a diffusion coefficient 

1 = IS,l J(v') "1 . 

Then, if we take c = c, we find 

(A-15) 

dc 
r=-Y-. 

dz 
(A-16 

The mechanics of turbulent shear stress develop- 
ment is quite similar to that of sediment transport. 
Thus, the physical properties of turbulent friction 
can be used to derive equivalent properties for sedi- 
ment transport. 

The shear stress in turbulent flow is 

.- 
T=_ p u'v' . (A-17) 

Proceeding as above, we find 

du 

T=Py';jr, 
(~-18) 

where $' is a kinematic eddy viscosity defined as 

\y' = (A-19) 

The quantity !32 is a correlation coefficient similar 
to 8 and a, is a mixing length. Experimentally, it 
has &en established that 

Y = BY’ , (A-20) 

where 0 is an empirical parameter near unity. 

The above analysis was developed for sediment 
transport and turbulent friction in a river with a 
free surface. We are interested in suspension and 
flow in a slot. In river flow, the shear stress T 

develops in a horizontal plane. In slot flow, T 
develops in a vertical plane except near the bottom 
and top of the slot. 

For a vertical slot, Y is almost constant with 
height, and the distribution of sand concentration as 
derived from diffusion theory is 

(A-21) 

Here, c, is the concentration in the plane z = a. 
This exponential distribution has been confirmed 
experimentally by Rouse.27 

In river flow, because of the variable distri- 
bution of fluid velocity with depth, the diffusion 
coefficient is not constant and the theory leads to a 
distribution which is not exponential. The concentra- 
tion distribution with height is obtained in the 
following way. 

The von Karman velocity distribution25 is well 
confirmed experimentally. It can be expressed as 

u - u max 

Uf 
=;,og;, (A-22) 
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where h is river depth. K is the von Karman constant 
approximately 0.4, and z is distance from the river 
bottom. Uf, the friction velocity, is given by 

Uf= lo. 
f 

(A-23 
P 

~a is the shear stress at the river bottom. It is 
known to be 

'10 =pgs 

where S is the slope of the bottom. 

(A-24 

The distribution of T along z is obtained from 
the equation which expresses the equilibrium between 
the water above the point z and the gravity component 
along the slope. It is written 

h -z 

r=hTO' 
(A-25 

Combining (A-25) and (A-18), introducing the 
von Karman distribution (A-22) for u and solving for 
Y, we obtain 

y = by’ = 
B K z (h - z) 

h 
(~-26 

The differential equation for steady-state 
distribution of sand concentration c along the 
vertical direction is 

dc 
Y-tvtc=o. 

dz 

Substituting for Y from 

c = CH [ 
(h - z)H a 

dh - HI 
1 

with 

a = 
Vt . 

(A-27 

(A-26) and integrating gives 

(~-28 

(A-29 1 

Here H is the height above the bottom where a concen- 
tration ca exists. 

The distribution (A-28) has been well confirmed 
by experimental data for the suspension region, thus 
verifying the diffusion theory. Typically the concen 
tration c is measured at distances of the order H = 
.05 h. Tlus the suspension region where the diffusia 
theory is valid extends over about 95% of the depth h 
K is obtained from the von Karman distribution using 
measurements of the velocity distribution u. A value 
of a is obtained from (A-28) using measurements of c. 
Since vt and T are known, 6 can be determined from 
(A-29) using tke experimental value of a. 

Results show B to be close to unity and to be 
insensitive to sediment concentration. K is found ta 
decrease with increasing sediment concentration. It 
is defined as the concentration which, when multiplie 
by the flow rate, will give the total sediment dis- 
charge of the flow. 

K correlates with concentration best when c is 
measured between z = .OOl h and -01 h. This indicate 

, 

) 

I 

!d 

!S 

that the major effect of the sediment on the flow 
occurs near the bed. 

The decrease of K with concentration indicates 
that the diffusion coefficient also decreases. It is 
natural to assume that this reflects the damping of 
turbulence by the sediment, since the suspension 
energy is provided by the turbulence. 

The dependence of K on concentration 

K = K(c) (A-30) 

implies a variation of K with z and a decrease of K 
and Y near the bottom where c is highest. 

These results from the theory of sediment trans- 
port in rivers have some useful applications to our 
problem of slot flow. To investigate these, we begin 
by considering fluid flow in pipes. Friction coeffi- 
cients for pipe flow are well known and can be related 
to diffusion coefficients. 

In a pipe of diameter d a friction coefficient 
cf is defined by the equatio R 

0 P3 
-ax =Cf2dp. (A-31) 

Associated with the pressure gradient apjax is a shear 
stress 'l. at the pipe wall, 

1 
TO = 8 cfpu2* 

(A-32) 

Equation (A-31) can be applied to slot flow by 
taking d = w. Thus, Equation (A-32) represents the 
shear stvess at the slot wall. If we take B = 1, then 
from (A-26) Y = Y' and 

$= (A-33) 

where we have substituted (A-32) for ~~~ This result 
applies to each of the half widths 0 < y < w/2 and 
WI2 < y < w. 

The diffusion coefficient at z is the average of 
Y across the width, i.e. 

(A-34) 

Therefore, we obtain 

D = Buw 

if we take 

(A-35) 

B = .0294 K 4 . (A-36) 

The friction coefficient cf is a function of the 
Reynold's number Re = uw/v. The dependence of c on 
Re is well established experimentally. Figure 1 5 
shows some experimental data. The solid line corre- 
sponds to smooth walls and the broken line to rough 
walls where the roughness is of the order w/120. The 
turbulent region corresponds to 

Re > 3500. (A-37) 
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A practical value of cf from Figure 2 is 

Cf = .03 . (A-38 

For small c, we have K = 0.4. Equation (A-36) then 
gives 

6 = 2.1 x 10-a. (A-39 

This independent evaluation of B agrees remarkably 
well with the one given by Equation (A-10). 

The use of Equation (A-25) for the diffusion 
coefficient naturally implies that the flow is 
turbulent. Therefore, from Figure 12, 

II=0 for Re < 3300 (A-40 

and the transition from laminar to turbulent flow 
occurs for 

3300 < Re < 3600. 

We then have 

B=O 

Re - 
B= 3300 (2.1 x 

300 

B = 2.1 x 1O-3 

APPENDIX B 

.O-3 

(A-41 

for Re < 3300 

) for 3300 < Re < 360 

for Re > 3600 
(A-42 

Consider a loose sand pack with c = 0.5. Using 
the Brinkman relation1g'20, Equation (64), we 
find F(c) = 25. The corresponding permeability given 
by Equation (63) is 

k=f. (B-1) 

However, based on the data of Muskat31, the perme- 
ability should be 

dz 
k= 

4ooo' 
(B-2) 

For 20-40 sand with an average d = .067 cm, 
Equation (B-2) gives k = 110 darcy, which is in good 
agreement with our own permeability measurements for 
20-40 sand packs. Thus, the Brinkman result is too 
high by about a factor of 10. 

We have used this result to develop a corrected 
F(c) for use in the Brinkman relation. Figure 13 
shows F(c) plotted as a function of c. The broken 
line curve in this figure represents Equation (64). 
The solid line represents a corrected curve which has 
been adjusted to agree with Equation (B-2). This 
curve corresponds to the adjusted F(c) given by 
Equation (65). 

APPENDIX C 

We wish to evaluate the total power dissipated 
due to particle motion in the unit cube of Figure 8. 
The virtual strain rate ~zz is given by 

(C-1) 

The strain rates in the other two principal directions 
are 

1 b0 EXX = Eyy = - 7 EZZ = - a * (C-2) 

Owing to the rigidity of the spheres and the 
viscous adherence of the fluid, the strain rate in the 
fluid of the cubic cell is not distributed uniformly. 
We therefore consider various partial volumes of fluid 
in the cell. To simplify this procedure, we designate 
the vertices of the cubic cell by the numbers shown in 
Figure 8. 

Consider the edge (0,l). When the shaded area, 
illustrated in Figure 14, is rotated by 90" around 
(0,l) as an axis, it generates a volume 

nd2a nd3 
“1 

=-K-24. 
(C-3) 

We wish to evaluate the power dissipated in this 
volume. In order to simplify integrations, we replace 
the spheres by parabolas of revolution as illustrated 
in Figure 15. We have in polar coordinates 

h=ho+Zr'. 
d 

(C-4) 

We choose coefficients to make 

h-h,=; 
d 

when r = - . 
2 

The distribution of strain rate in the volume V, 
will be approximated as follows. We assume an axial 
strain rate along z which is independent of z and 
given by 

‘ho 
EZZ =g- (C-6) 

at a distance r from the axis. As shown in 
Figure 5(b), there is also a shear component along r 
which is due to a radial velocity component vr. We 
take the distribution of this component along z to be 
parabolic, 

vr = Q(r) [l - (:I21 - 
Q(r) is determined by the incompressibility condition 

. h 
nrzhO + 2rr J v,dz = 0 , (C-8) 

0 

which gives 

. 

Q(r) = - z . (C-9) 

The shear component of strain rate associated 
with v, is . 

ErZ az 
= 5 = _ Q(r) g = ?!b.$ . 
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The power dissipated in the volume V, is 

P, = 211 _f (~xx' + ~yyz + 6zz2) dV, 

Vl 

(C-11 

Making use of (C-2), we get 

P, = 3u J Ezz2dV1 + I.I II 
“1 

Substituting (C-6) 
and t3 around the z 
integral in (C-12) 

I czz2dV = 2 

Vl 

r/2 d/2 

df2 rdr 
=I+/ -, 

0 h 

I Erz 
2dV,. 

Vl 

(C-12 

and using the polar coordinates r 
axis, we find for the first volume 

For h, we substitute (C-4) to get 

/ 
d/2 rdr 1 

-=- 

0 h 

4 d Iog ( 
h, + d/2 

h0 
1 - 

Thus, the first term in (C-12) is 

3P I c ZZ2dv1 
l-+5 

h 

= ;nukod log I-----, 
5 ) 

where 

+. 

The second volume integral in (C-11) is 

r/2 h d/2 

P I Erz2dV1 = 2u J de J dz J crz2rdr. 

Vl 0 0 0 

Substituting (C-lo), we get 

9 d/2 r3z2 

4 
I$-I~~ Jldz J 

0 
h6 dr 

3 
l 2 I 

d/2 rsdr 
= --pho 
4 0 

7' 

Using (C-4) for h, we get 

3 1 
u I "rz2dV1 

Vl 

= 32 nuho2d -- . 
5(1+5)2 

(C-13 

(C-14 

(C-15 

(C-16 

(C-17 

(C-18 

(C- 19 

Combining (C-15) and (C-19), we get for the power 
dissipated 

P, =; (C-2c 

The strain rate of the unit cell along z is 

e 
2ilo 

zz=,* (C-21 

Substituting this relation into (C-19) gives 

3 
P, = -nua2d ezz2 [log (F) + 85t:tE12 

16 
] (C-22) 

Corresponding to the volume V 
the axis (0,l) are three equivalen \ 

generated along 
volumes along the 

axes (2,3), (4,5), and (6,7). The total power dis- 
sipated in these four volumes is just 4P,. 

There are eight equiva?ent volumes V along the 
axes (1,2), (5,6), (0,3), (4,7), (1,5), (h,6), (3,7), 
and (0,4). Along these directions, owing to the 
incompressibility of the fluid, we have 

1 
exx = eyy = - 2 e,,. (C-23) 

Therefore, the power dissipated in each of the above 
ei ht volumes is l/4 P, and the sum for all eight 

7 vo umes is 2P,. 

given 
The remaining volume of the unit cell, V, is 
approximately by 

V, = a3 - 12 V . 

Substituting (C-3) 

(C-24) 

V, = a3 
3nd2a 1 

- _t_nds. 
4 2 

From (C-16) 

d 1 
---* 

1+5 a 

(C-25) 

(C-26) 

Therefore 

V, = a3 [l 
3n 

-_t"_T 
4(1+5)2 2(1+5)3 

(C-27) 

We assume that the strain rates in V, along the 
principal directions x, y, and z are e 
eZZ, respectively. Using (C-23), we f?% f@'th""ed 
power dissipated in V,, 

P, = 3u;zzz V,. (C-28) 

Adding all of the contributions derived above, we find 
the total power dissipated in the unit cube of volume 
a3 to be 

P = 4P, + 2P, + P, . (C-29) 

Substituting (C-22) for P 
for V2, we get Equation ( + 

, (C-28) for P,, and (C-27) 
7) in the text. 

APPENDIX D 

We consider first the motion of grains under low 
transport conditions. This problem has been treated 
by Taylor and Vanoni.28'so 

From dimensional analysis, it has been estab- 
lished that the important parameters are related by an 
equation of the form, 

TO 

bc_-dgd 
= f(Re*) = T* , (D-1) 
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where Re* is the boundary Reynold's number given by 

U*d 
Re* = - . 

V 
(D-2) 

This functional relation was first evaluated experi- 
mentally by Shields.**'sO It is plotted in 
Figure 16 in the form which has become known as 
Shield's curve. 

The Shield's curve can be translated into a plot 
of critical shear stress Tc vs. particle size for 
quart2 grains in water. Curves are shown in Figure 17 
for water at two temperatures. Values of the boundary 
Reynold's number Re* are shown. The temperature 
dependence arises from a viscosity factor which 
appears in Re*. 

Of greater interest than ~~ is the fluid velocity 
U* at which grain motion just begins. This is the 
critical pick-up velocity. Measurements of this 
velocity have been made in flumes under conditions 
somewhat similar to slot flow. Figure 18 shows mea- 
surements by Liu s* plotted as Vk/vt vs. Re*, where 

J 

- 

u*= '0. (D-3) 
P 

U* is the shear velocity and 'l. is the friction stress 
at the bottom. Curve A represents the limit below 
which sand transport is not perceptible. Curve 6 
represents the conditions where ripples begin to 
appear. 

Comparing (D-3) with (D-l), we find the relation 
to the Shield's parameter: 

The drag coefficient Cd is a function of the particle 
Reynold's number. The dependence is shown in 
Figure 19. For Re * 1, Cd has a logarithmic depen- 
dence on Re in a&ordance with Stoke's Law. For 
lo3 < Re <'lOs, CD is roughly constant with a value 
of aboutP0.4. The sharp drop near Re = 4 x lo5 
corresponds to the sudden appearance t: f a boundary 
layer which tends to adhere to the particle surface. 

According to Figure 19, we can take C x 0.4 for 
conditions at or approaching natural turbu ence. f' 
Substituting this value in (D-4), we get 

T* = 3.3 Q*. (D-5) 

We can find the value of U* under the same conditions 
by substituting Equations (A-32) and (A-38) into 
(D-3). This gives 

u* = u J Cf = 0.061 U. 
s 

Substituting this result into (D-4), we find 

vt= Oe2 -. 
U JT* 

(D-6) 

(D-7) 

Using this result in (D-2), taking d = 0.5 cm and 
v = .Ol poise, we find 

Re* q 0.3 U. (D-8) 

For U = 30 cm/set (D-8) gives Re* = 9 and, according 
to Figure 18, sand grain motion starts at U*/vt = 0.2. 
From (D-6) 

u * 3 Vt. (D-9) 

According to this result, the horizontal fluid 
velocity must be about three times the fall velocity 
for grain pick-up to be initiated. This applies to 
natural turbulence where the velocity fluctuations, 
according to Equation (A-2) are of the order .05 U. 
This means that particle pick-up begins when the aver- 
age turbulent velocity fluctuation is about l/6 of the 
fall velocity vt. 

Grain pick-up under stimulated turbulence can be 
considered in the same way. According to Equation 
(54), we can take velocity fluctuations to be of the 
order 0.15 U, or about 3 times the value for natural 
turbulence. Thus, from (D-9) we find for stimulated 
turbulence 

Uw vt. 

This means that, near the slot entrance, grain pick-up 
starts when the horizontal velocity is about equal to 
the fall velocity. These results are roughly consis- 
tent with experimental data for single spheres.a3 

Slot flow experiments show that ripples appear in 
the settled bank under certain conditions. According 
to Figure 18, this should happen at a fluid velocity 
only a little greater than that for grain pick-up. 
This is consistent with slot flow experiments reported 
in an accompanying paper. '7 These results support the 
applicability of the flume flow results of Figure 18 
to our slot flow problem. 
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